Abstract

Coal ash slurries hold paramount importance in the service life of the coal and mining industries, significantly impacting their operational efficiency and durability. The literature reveals that the prominent dominating parameters such as rotational speed, concentration, time duration, and particle shape and size have a major impact on erosion wear. This research aims to explore the effects of coal ash slurries on Colmonoy-88-coated pump impeller steel, employing a combination of design of experiments (DOE) and digital image analysis (DIA). Through slurry experiments, it is observed that erosion wear increases non-linearly with an increase in influencing parameters. The particle size emerges as the most significant factor, followed by concentration, speed, and time. Additionally, DIA is leveraged to validate the influence of various erodent particle sizes on the erosion wear of the pump impeller steel. Results indicate that coal particles possess irregular shapes and sizes compared to fly ash and bottom ash, consequently resulting in larger erosion wear due to their lowest circularity factor (0.72). Furthermore, smaller particles exhibit lower erosion wear-rates compared to larger ones. This study sheds light on the intricate dynamics of erosion wear in the context of coal ash slurries, offering insights crucial for optimizing pump impeller steel durability in similar operational environments.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Bouwman
,
A. M.
,
Bosma
,
J. C.
,
Vonk
,
P.
,
Wesselingh
,
J. H. A.
, and
Frijlink
,
H. W.
,
2004
, “
Which Shape Factor (s) Best Describe Granules?
,”
Powder Technol.
,
146
(
1–2
), pp.
66
72
.
2.
Peng
,
G.
,
Fan
,
F.
,
Zhou
,
L.
,
Huang
,
X.
, and
Ma
,
J.
,
2021
, “
Optimal Hydraulic Design to Minimize Erosive Wear in a Centrifugal Slurry Pump Impeller
,”
Eng. Fail. Anal.
,
120
, p.
105105
.
3.
Desale
,
G. R.
,
Gandhi
,
B. K.
, and
Jain
,
S. C.
,
2006
, “
Effect of Erodent Properties on Erosion Wear of Ductile Type Materials
,”
Wear
,
261
(
7–8
), pp.
914
921
.
4.
Riley
,
N. A.
,
1941
, “
Projection Sphericity
,”
J. Sediment. Res.
,
11
(
2
), pp.
94
95
.
5.
Yang
,
Q.
, and
Pankov
,
V.
,
2023
, “
Solid Particle Erosion Performance and Damage Mechanism of AlTiN Coating
,”
Tribol. Trans.
,
66
(
5
), pp.
1
11
.
6.
Zhang
,
J.
, and
Liu
,
H.
,
2023
, “
Effect of Solid Particles on Performance and Erosion Characteristics of a High-Pressure Turbine
,”
Energy
,
272
, p.
127185
.
7.
Woldman
,
M.
,
van der Heide
E.
,
Schipper
,
D. J.
,
Tinga
,
T.
, and
Masen
,
M. A.
,
2012
, “
‘Investigating the Influence of Sand Particle Properties on Abrasive Wear Behavior
,”
Wear
,
294
, pp.
419
426
.
8.
Levy
,
A. V.
, and
Chik
,
P.
,
1983
, “
The Effects of Erodent Composition and Shape on the Erosion of Steel
,”
Wear
,
89
(
2
), pp.
151
162
.
9.
Jianxin
,
D.
,
Zeliang
,
D.
, and
Dongling
,
Y.
,
2006
, “
Erosion Wear Mechanisms of Coal–Water–Slurry (CWS) Ceramic Nozzles in Industry Boilers
,”
Mater. Sci. Eng. A
,
417
(
1–2
), pp.
1
7
.
10.
Walker
,
C. I.
, and
Hambe
,
M.
,
2015
, “
Influence of Particle Shape on Slurry Wear of White Iron
,”
Wear
,
332–333
, pp.
1021
1027
.
11.
Finnie
,
I.
,
1960
, “
Erosion of Surfaces by Solid Particles
,”
Wear
,
3
(2),
pp.
87
103
.
12.
Singh
,
G.
,
Kumar
,
S.
,
Sehgal
,
S. S.
, and
Gill
,
H. S.
,
2022
, “
Investigation on the Impact of Physical Properties of the Coal-Ash Slurries on the Erosion Wear Performance of WC Coated Steel by Using Image Processing Technique
,”
Int. J. Coal Prep. Util.
,
42
(
8
), pp.
2406
2426
.
13.
Boschetto
,
A.
, and
Giordano
,
V.
,
2012
, “
Powder Sampling and Characterization by Digital Image Analysis
,”
Measurement
,
45
(
5
), pp.
1023
1038
.
14.
Abd-Elrhman
,
Y. M.
,
Abouel-Kasem
,
A.
,
Emara
,
K. M.
, and
Ahmed
,
S. M.
,
2014
, “
Effect of Impact Angle on Slurry Erosion Behaviour and Mechanisms of Carburized AISI 5117 Steel
,”
ASME J. Tribol.
,
136
(
1
), p.
011106
.
15.
Singh
,
A.
,
Singh
,
G.
,
Kumar
,
S.
, and
Sehgal
,
S. S.
,
2022
, “
Tribo-Erosion Performance of GFRP Composite Panels in Both Offshore and Onshore Environmental Conditions
,”
ASME J. Offshore Mech. Arct. Eng.
,
144
(
4
), p.
042003
.
16.
Heilbronner
,
R.
, and
Keulen
,
N.
,
2006
, “
Grain Size and Grain Shape Analysis of Fault Rocks
,”
Tectonophysics
,
427
(
1–4
), pp.
199
216
.
17.
Tarodiya
,
R.
, and
Gandhi
,
B. K.
,
2021
, “
Numerical Investigation of Erosive Wear of a Centrifugal Slurry Pump Due to Solid–Liquid Flow
,”
ASME J. Tribol.
,
143
(
10
), p.
101702
.
18.
Rawat
,
A.
,
Singh
,
S. N.
, and
Seshadri
,
V.
,
2017
, “
Erosion Wear Studies on High Concentration Fly Ash Slurries
,”
Wear
,
378
, pp.
114
125
.
19.
Zhou
,
Y.
,
Lu
,
Z.
, and
Zhan
,
M.
,
2007
, “
An Investigation of the Erosion–Corrosion Characteristics of Ductile Cast Iron
,”
Mater. Des.
,
28
(
1
), pp.
260
265
.
20.
Singh
,
J.
,
Kumar
,
S.
, and
Mohapatra
,
S. K.
,
2017
, “
Tribological Analysis of WC–10Co–4Cr and Ni–20Cr2O3 Coating on Stainless Steel 304
,”
Wear
,
376
, pp.
1105
1111
.
21.
Nautiyal
,
H.
,
Sharma
,
P. K.
, and
Tyagi
,
R.
,
2020
, “
High-Temperature Erosive Wear Behavior of High-Velocity Oxy-Fuel Sprayed Cr3C225 (Ni20Cr) Coating on (AISI 316) Austenitic Steel
,”
ASME J. Tribol.
,
142
(
7
), p.
071702
.
22.
Singh
,
M. K.
,
Kumar
,
S.
, and
Ratha
,
D.
,
2020
, “
Computational Analysis on Disposal of Coal Slurry at High Solid Concentrations Through Slurry Pipeline
,”
Int. J. Coal Prep. Util.
,
40
(
2
), pp.
116
130
.
23.
Singh
,
A.
,
Kumar
,
H.
, and
Kumar
,
S.
,
2023
, “
A Comparative Study of Erosion Wear Performance of Thermally Sprayed Ni-Based Composite Coatings
,”
J. Mater. Eng. Perform.
,
33
(
3
), pp.
1143
1155
.
24.
Gee
,
M. G.
,
Gant
,
A.
, and
Roebuck
,
B.
,
2007
, “
Wear Mechanisms in Abrasion and Erosion of WC/Co and Related Hard Metals
,”
Wear
,
263
(
1–6
), pp.
137
148
.
25.
Behzadian
,
M.
,
Otaghsara
,
S. K.
,
Yazdani
,
M.
, and
Ignatius
,
J. A.
,
2012
, “
A State-of the-art Survey of TOPSIS Applications
,”
Exp. Syst. Appl.
,
39
(
17
), pp.
13051
13069
.
26.
Kumar
,
R.
,
Goyal
,
K.
, and
Bhandari
,
D.
,
2023
, “
Slurry Erosion Behavior of Thermally Sprayed Nano YSZ Reinforced WC-10Co-4Cr Ceramic Nanocomposite Coatings
,”
Tribol. Trans.
,
66
(
1
), pp.
47
58
.
27.
Desale
,
G. R.
,
Gandhi
,
B. K.
, and
Jain
,
S. C.
,
2008
, “
Slurry Erosion of Ductile Materials Under Normal Impact Condition
,”
Wear
,
264
(
3–4
), pp.
322
330
.
28.
Gandhi
,
B. K.
,
Singh
,
S. N.
, and
Seshadri
,
V.
,
2001
, “
Performance Characteristics of Centrifugal Slurry Pumps
,”
ASME J. Fluids Eng.
,
123
(
2
), pp.
271
280
.
29.
Walker
,
C. I.
, and
Robbie
,
P.
,
2013
, “
Comparison of Some Laboratory Wear Tests and Field Wear in Slurry Pumps
,”
Wear
,
302
(
1–2
), pp.
1026
1034
.
30.
Goyal
,
D. K.
,
Singh
,
H.
,
Kumar
,
H.
, and
Sahni
,
V.
,
2014
, “
Erosive Wear Study of HVOF Spray Cr3C2–NiCr Coated CA6NM Turbine Steel
,”
ASME J. Tribol.
,
136
(
4
), p.
041602
.
31.
Modi
,
O. P.
,
Dasgupta
,
R.
,
Prasad
,
B. K.
,
Jha
,
A. K.
,
Yegneswaran
,
A. H.
, and
Dixit
,
G.
,
2000
, “
Erosion of a High-Carbon Steel in Coal and Bottom-Ash Slurries
,”
J. Mater. Eng. Perform.
,
9
(
5
), pp.
522
529
.
32.
More
,
S. R.
,
Bhatt
,
D. V.
,
Menghani
,
J. V.
, and
Jagtap
,
R. K.
,
2022
, “
CFD Simulation and Experimental Results Validation of Slurry Erosion Wear Using Slurry Pot Test Rig
,”
Trends Sci.
,
19
(
11
), pp.
4524
4524
.
33.
Chandel
,
S.
,
Singh
,
S. N.
, and
Seshadri
,
V.
,
2012
, “
Experimental Study of Erosion Wear in a Centrifugal Slurry Pump Using Coriolis Wear Test rig
,”
Part. Sci. Technol.
,
30
(
2
), pp.
179
195
.
You do not currently have access to this content.