Abstract

In contact models, traditional profile description methods are based on all sampling points of the profile. The methods can only describe the features in the height direction of profile, but are difficult to describe the profile features perpendicular to the height direction, which is the main obstacle to side contact modeling. In this paper, a profile description method based on peaks is proposed, which enables the profile features perpendicular to the height direction of the profile to be expressed. The statistical distribution law of the horizontal distances perpendicular to the height direction of the profile between adjacent asperities on anisotropic contact surfaces is investigated for the first time, and it is found that the distribution of the horizontal distances is very close to the normal distribution, but the values are different in different texture directions. The distribution law of the height differences between adjacent asperities is also investigated and is found to be close to a normal distribution, but the numerical values are different from the normal distribution of profile heights. Based on the results, the distribution function of the contact angle widely used in side contact model is replaced, and a new side contact model is proposed. By the model, the effects of the statistical parameters of surface profile and the material parameters of surfaces on the surface contact characteristics are investigated. The results of investigation show that the effect of the standard deviations of the horizontal distances between asperities in different texture directions on the normal contact stiffness between surfaces is obvious, and the normal contact stiffness will decrease with the increase of the standard deviation of the horizontal distances in any direction.

References

1.
Wei
,
L.
,
Gu
,
B. Q.
,
Feng
,
F.
,
Feng
,
G.
, and
Sun
,
J.
,
2009
, “
Progress of Study on Contact Models of Rough Surfaces
,”
Lubr. Eng.
,
34
(
7
), pp.
112
117
.
2.
Carpick
,
R. W.
,
2018
, “
The Contact Sport of Rough Surfaces
,”
Science
,
359
(
6371
), pp.
38
38
.
3.
Chen
,
Z.
,
Liu
,
Y.
, and
Zhou
,
P.
,
2019
, “
A Novel Method to Identify the Scaling Region of Rough Surface Profile
,”
Fractals
,
27
(
02
), p.
1950011
.
4.
Wang
,
S. J.
, and
Zhao
,
J. J.
,
2019
,
Finite Element Method in Mechanical Engineering
,
Science Press
,
Beijing
.
5.
Liu
,
Y.
,
Xia
,
T.
,
Chen
,
Z.
, and
Yan
,
G.
,
2020
, “
The Development of Statistical Contact Model for Rough Surface
,”
Tribology
,
40
(
3
), pp.
395
406
.
6.
Greenwood
,
J. A.
, and
Williamson
,
J. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, A
,
295
(
1442
), pp.
300
319
.
7.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
257
263
.
8.
Zhao
,
Y.
,
Lv
,
Y.
, and
Jiang
,
J.
,
2007
, “
A New Elastoplastic Contact Model for Rough Surfaces
,”
Chin. J. Mech. Eng.
,
43
(
3
), pp.
95
101
.
9.
Zhao
,
Y.
,
Maietta
,
D. M.
, and
Chang
,
L.
,
2000
, “
An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
,
122
(
1
), pp.
86
93
.
10.
Kogut
,
L.
, and
Etsion
,
I.
,
2002
, “
An Improved Elastic-Plastic Model for the Contact of Rough Surfaces
,”
Proceedings of the 3rd AIMETA International Tribology Conference
,
Vietri Sul Mare, Salerno, Italy
,
Sept. 18–20
.
11.
Wang
,
D.
,
Zhang
,
Z.
,
Jin
,
F.
, and
Fan
,
X.
,
2019
, “
Normal Contact Model for Elastic and Plastic Mechanics of Rough Surfaces
,”
Acta Mech. Solida Sin.
,
32
(
2
), pp.
148
159
.
12.
Gorbatikh
,
L.
, and
Popova
,
M.
,
2006
, “
Modeling of a Locking Mechanism Between Two Rough Surfaces Under Cyclic Loading
,”
Int. J. Mech. Sci.
,
48
(
9
), pp.
1014
1020
.
13.
Jager
,
J.
,
1999
, “
Uniaxial Deformation of a Random Packing of Particles
,”
Arch. Appl. Mech.
,
69
(
3
), pp.
181
203
.
14.
Abdo
,
J.
, and
Farhang
,
K.
,
2005
, “
Elastic–Plastic Contact Model for Rough Surfaces Based on Plastic Asperity Concept
,”
Int. J. Non Linear Mech.
,
40
(
4
), pp.
495
506
.
15.
Gao
,
Z.
,
Fu
,
W.
,
Wang
,
W.
,
Lou
,
L.
, and
Wu
,
J.
,
2018
, “
Energy Dissipation Study of Elastic-Plastic Asperity Side Contact During Normal Loading-Unloading
,”
J. Mech. Eng.
,
54
(
1
), pp.
150
160
.
16.
Shi
,
X.
,
Zou
,
Y.
, and
Fang
,
H.
,
2016
, “
Numerical Investigation of the Three-Dimensional Elastic-Plastic Sloped Contact Between Two Hemispheric Asperities
,”
ASME J. Appl. Mech.
,
83
(
10
), p.
101004
.
17.
Chang
,
C.
, and
Misra
,
A.
,
1990
, “
Packing Structure and Mechanical Properties of Granulates
,”
J. Eng. Mech.
,
116
(
5
), pp.
1077
1093
.
18.
Misra
,
A.
, and
Huang
,
S.
,
2011
, “
Effect of Loading Induced Anisotropy on the Shear Behavior of Rough Interfaces
,”
Tribol. Int.
,
44
(
5
), pp.
627
634
.
19.
Misra
,
A.
, and
Huang
,
S.
,
2012
, “
Micromechanical Stress–Displacement Model for Rough Interfaces: Effect of Asperity Contact Orientation on Closure and Shear Behavior
,”
Int. J. Solids Struct.
,
49
(
1
), pp.
475
484
.
20.
Gao
,
Z.
,
Fu
,
W.
,
Wang
,
W.
,
Kang
,
W.
, and
Liu
,
Y.
,
2018
, “
The Study of Anisotropic Rough Surfaces Contact Considering Lateral Contact and Interaction Between Asperities
,”
Tribol. Int.
,
126
(
2018
), pp.
270
282
.
21.
Wang
,
S.
,
Fan
,
L.
,
Wu
,
J.
, and
Li
,
P.
,
2022
, “
A Side Contact Model of Joint Considering the Horizontal Distance Between Asperities
,”
ASME J. Tribol.
,
144
(
10
), p.
101501
.
22.
Eriten
,
M.
,
Polycarpou
,
A. A.
, and
Bergman
,
L. A.
,
2011
, “
Physics-Based Modeling for Fretting Behavior of Nominally Flat Rough Surfaces
,”
Int. J. Solids Struct.
,
48
(
10
), pp.
1436
1450
.
23.
Brizmer
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2007
, “
Elastic-Plastic Spherical Contact Under Combined Normal and Tangential Loading in Full Stick
,”
Tribol. Lett.
,
25
(
1
), pp.
61
70
.
24.
Socoliuc
,
A.
,
Bennewitz
,
R.
,
Gnecco
,
E.
, and
Meyer
,
E.
,
2004
, “
Transition From Stick-Slip to Continuous Sliding in Atomic Friction: Entering a New Regime of Ultralow Friction
,”
Phys. Rev. Lett.
,
92
(
13
), p.
134301
.
25.
Dahl
,
P. R.
,
1968
, “
A Solid Friction Model
,”
Aerosp. Corp.
,
18
(
1
), pp.
1
24
.
26.
Eguchi
,
M.
,
Shibamiya
,
T.
, and
Yamamoto
,
T.
,
2009
, “
Measurement of Real Contact Area and Analysis of Stick/Slip Region
,”
Tribol. Int.
,
42
(
11–12
), pp.
1781
1791
.
27.
Kato
,
S.
,
Yamaguchi
,
K.
, and
Matsubayashi
,
T.
,
1974
, “
Stick-Slip Motion of Machine Tool Slideway
,”
ASME J. Manuf. Sci. Eng.
,
96
(
2
), pp.
557
566
.
28.
Kato
,
S.
,
Sato
,
N.
, and
Matsubayashi
,
T.
,
1972
, “
Some Considerations on Characteristics of Static Friction of Machine Tool Sideway
,”
J. Lubr. Technol.
,
94
(
3
), pp.
234
247
.
29.
Kato
,
S.
, and
Matsubayashi
,
T.
,
1970
, “
On the Dynamic Behavior of Machine Tool Slideway: 1st Report, Characteristics of Static Friction in 'Stick Slip' Motion
,”
Bull. JSME
,
13
(
55
), pp.
170
179
.
30.
Dong
,
Q.
,
Zhou
,
K.
,
Wei
,
R.
,
Luo
,
J.
, and
Srikanth
,
N.
,
2015
, “
Analysis of Fluid Pressure, Interface Stresses and Stress Intensity Factors for Layered Materials With Cracks and Inhomogeneities Under Elastohydrodynamic Lubrication Contact
,”
Int. J. Mech. Sci.
,
93
, pp.
48
58
.
31.
Dong
,
Q.
,
Zhou
,
K.
,
Chen
,
W. W.
, and
Fan
,
Q.
,
2016
, “
Partial Slip Contact Modeling of Heterogeneous Elasto-Plastic Materials
,”
Int. J. Mech. Sci.
,
114
, pp.
98
110
.
32.
Dong
,
Q.
,
Chen
,
Z.
,
Zhou
,
K.
, and
He
,
D.
,
2021
, “
Fretting Contact of Layered Materials With Vertical Cracks Near Surfaces
,”
Int. J. Mech. Sci.
,
198
, p.
106361
.
33.
Dong
,
Q.
,
Chen
,
Z.
,
Wang
,
C.
,
Zhou
,
K.
, and
Wei
,
J.
,
2021
, “
Partial Slip Contact of Materials With Vertically Aligned Cracks Near Surface
,”
Eng. Fract. Mech.
,
245
, p.
107557
.
34.
Dong
,
Q.
,
Chen
,
Z.
,
Bai
,
X.
,
Wei
,
J.
, and
Zhou
,
K.
,
2022
, “
A Model for Fretting Contact of Layered Materials With Interfacial Cracks
,”
Theor. Appl. Fract. Mech.
,
122
, p.
103611
.
35.
Chen
,
Z.
,
Dong
,
Q.
,
Bai
,
X.
, and
Zhou
,
K.
,
2023
, “
A Dislocation-Based Model for Shear Cracks in Arbitrary Orientations Under Contact Loading
,”
Eng. Fract. Mech.
,
289
, p.
109384
.
36.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1991
, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
,
113
(
1
), pp.
1
11
.
37.
Mandelbrot
,
B.
,
1967
, “
How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension
,”
Science
,
156
(
3775
), pp.
636
638
.
38.
Chen
,
H.
,
Hu
,
Y.
,
Wang
,
H.
, et al
,
2006
, “
Simulation and Characterization of Fractal Rough Surfaces
,”
J. Mech. Eng.
,
42
(
9
), pp.
219
223
.
39.
Ge
,
S.
,
1997
, “
The Fractal Behavior and Fractal Characterization of Rough Surfaces
,”
Tribology
,
17
(
1
), pp.
73
80
.
40.
Mandelbrot
,
B. B.
,
1982
,
The Fractal Geometry of Nature
,
WH Freeman
,
New York
.
41.
Majumdar
,
A.
, and
Tien
,
C. L.
,
1990
, “
Fractal Characterization and Simulation of Rough Surfaces
,”
Wear
,
136
(
2
), pp.
313
327
.
42.
Shen
,
J.
, and
Wei
,
W.
,
2020
, “
Fractal Characteristic and Domain Extension Factor Study on Contact Model of Rough Surface
,”
Fractals
,
28
(
8
), p.
2040024
.
43.
Fan
,
L.
,
Wang
,
S.
,
Wu
,
J.
, and
Li
,
P.
,
2022
, “
Modeling of Normal Contact Stiffness of Joint Considering the Horizontal Distance Distribution and Interaction Between Asperities
,”
J. Mech. Eng.
,
58
(
21
), pp.
201
214
.
44.
Li
,
C.
, and
Shi
,
Z.
,
2003
, “
Spectrum Moment Characteristics of 3-D Rough Surface
,”
J. Beijing Univ. Technol.
,
29
(
4
), pp.
406
410
.
45.
Sun
,
J.
, and
Guo
,
Y. B.
,
2009
, “
A Comprehensive Experimental Study on Surface Integrity by End Milling Ti-6Al-4V
,”
J. Mater. Process. Technol.
,
209
(
8
), pp.
4036
4042
.
46.
Longuet-Higgins
,
M. S.
,
1957
, “
The Statistical Analysis of a Random Moving Surface
,”
Philos. Trans. R. Soc. London, Ser. A
,
249
(
966
), pp.
321
387
.
47.
Bush
,
A. W.
,
Gibson
,
R. D.
, and
Keogh
,
G. D.
,
1979
, “
Strong Anisotropic Rough Surface
,”
ASME J. Lubr. Tech.
,
101
(
1
), pp.
15
20
.
48.
Wang
,
Y.
,
Liu
,
Y.
, and
Li
,
H.
,
2022
, “
A Review of Rough Surface Simulation Methods
,”
J. Mech. Eng.
,
58
(
19
), pp.
148
165
.
49.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1990
, “
Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces
,”
ASME J. Tribol.
,
112
(
2
), pp.
205
216
.
50.
Wang
,
S.
,
He
,
H.
,
Guo
,
P.
, et al
,
2014
, “
Research on Contact Area and Load Carrying Capacity Between Coarse Surfaces
,”
J. Xi’an Univ. Technol.
,
30
(
1
), pp.
22
27
.
51.
Greenwood
,
J. A.
,
1984
, “
A Unified Theory of Surface Roughness
,”
Proc. R. Soc. A
,
393
(
1804
), pp.
133
157
.
52.
Tomanik
,
E.
,
2005
, “Modelling of the Asperity Contact Area on Actual 3D Surfaces,” SAE Technical Paper.
53.
Pogačnik
,
A.
, and
Kalin
,
M.
,
2013
, “
How to Determine the Number of Asperity Peaks, Their Radii and Their Heights for Engineering Surfaces: A Critical Appraisal
,”
Wear
,
300
(
1–2
), pp.
143
154
.
54.
Wang
,
Q.
,
Zhang
,
L.
, and
Du
,
B.
,
2016
, “
Re-Definition of Asperity-Peak for Deterministic Contact Model on Rough Surfaces
,”
J. Xi'an Jiaotong Univ.
,
50
(
11
), pp.
115
120
.
55.
Qiu
,
H.
,
2009
,
Quantitative Research and Statistical Analysis
,
Chongqing University Press
,
Chongqing, China
.
56.
Kogut
,
L.
, and
Etsion
,
I.
,
2002
, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
,
67
(
5
), pp.
657
662
.
57.
Jackson
,
R. L.
, and
Green
,
I.
,
2006
, “
A Statistical Model of Elasto-Plastic Asperity Contact Between Rough Surfaces
,”
Tribol. Int.
,
39
(
9
), pp.
906
914
.
58.
Kadin
,
Y.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2006
, “
Unloading an Elastic–Plastic Contact of Rough Surfaces
,”
J. Mech. Phys. Solids
,
54
(
12
), pp.
2652
2674
.
59.
Tian
,
H.
,
Zhong
,
X.
,
Zhao
,
C.
,
Zhao
,
X.
,
Fang
,
Z.
,
Liu
,
F.
,
Zhu
,
D.
,
Lin
,
W.
, and
Yan
,
H.
,
2009
, “
One Loading Model of Joint Interface Considering Elastoplastic and Variation of Hardness With Surface Depth
,”
J. Mech. Eng.
,
34
(
7
), pp.
112
117
.
60.
Wang
,
S.
,
Li
,
Z.
,
Han
,
Z.
, and
Zhao
,
J.
,
2019
, “
Tangential Stiffness Model of Joint Surface Based on Continuous Deformation Theory of Asperity
,”
J. Xi'an Univ. Technol.
,
35
(
4
), pp.
401
410
.
61.
Zhu
,
L.
,
Zhuang
,
Y.
,
Hong
,
J.
, and
Yang
,
G.
,
2013
, “
An Elasto-Plastic Contact Mechanics Model of Asperities Considering Side Contact
,”
J. Xi'an Jiaotong Univ.
,
47
(
11
), pp.
48
52
.
62.
Zhuang
,
Y.
,
Li
,
B.
,
Hong
,
J.
,
Yang
,
G.
, and
Zhu
,
L.
,
2013
, “
Construction of a Calculation Model for Normal Contact Stiffness of Joint Surface
,”
J. Shanghai Jiaotong Univ.
,
47
(
2
), pp.
180
186
.
63.
Horng
,
J.
,
Wei
,
C.
,
Tsai
,
H.
, and
Shiu
,
B.
,
2009
, “
A Study of Surface Friction and Particle Friction Between Rough Surfaces
,”
Wear
,
367
(
5–8
), pp.
1257
1263
.
64.
Cheng
,
S.
,
Meng
,
X.
,
Li
,
R.
,
Liu
,
R.
,
Zhang
,
R.
,
Sun
,
K.
,
Ye
,
W.
, and
Zhao
,
F.
,
2022
, “
Rough Surface Damping Contact Model and Its Space Mechanism Application
,”
Int. J. Mech. Sci.
,
214
, p.
106899
.
65.
Guo
,
Y.
,
Bian
,
D.
, and
Zhao
,
Y.
,
2017
, “
An Elastic-Plastic Model Considering Frictional Tangential Stress for the Contact of Rough Surface
,”
Lubr. Eng.
,
42
(
8
), pp.
14
19
.
66.
McCool
,
J.
,
1986
, “
Predicting Microfracture in Ceramics Via a Microcontact Mode
,”
ASME J. Tribol.
,
108
(
3
), pp.
380
385
.
You do not currently have access to this content.