Abstract

This work presents an investigation of magnetohydrodynamic flow in a novel double restriction seal configuration using micro-Particle Image Velocimetry (µPIV). A conventional seal design has been modified to impart magnetic effects in the flow of magnetorheological grease, which is prepared with 5% by weight of carbonyl iron particles dispersed in NLGI 3 grade lithium-soap-based grease. Rectangular bar magnets are fitted on the seal to induce an external magnetic field strength greater than 0.8 T. The grease flows between two restrictions in the annular domain, and the velocity field is captured by a µPIV technique. Experimental results predict that flow velocities are considerably lower in the presence of the magnetic field. Carbonyl iron particles orient themselves in the direction of the magnetic field and form strong chains which increase the yield stress of the grease medium. Maximum velocities are obtained in the vicinity of the shaft. Further, a numerical model has been developed to predict the velocities at different locations in the annular grease domain at varying rotational speeds of the shaft.

References

1.
Jiabao
,
P.
,
Guangxin
,
Y.
, and
Jianping
,
W.
,
2022
, “
Thermorheological Properties of Magnetorheological Grease and Its Thermomagnetic Coupling Mechanism
,”
J. Intell. Mater. Syst. Struct.
,
33
(
3
), pp.
432
444
.
2.
Raj
,
A.
,
Sarkar
,
C.
, and
Pathak
,
M.
,
2021
, “
Magnetorheological Characterization of PTFE-Based Grease With MoS2 Additive at Different Temperatures
,”
IEEE Trans. Magn.
,
57
(
7
), pp.
1
10
.
3.
Ahamed
,
R.
,
Choi
,
S. B.
, and
Ferdaus
,
M. M.
,
2018
, “
A State of Art on Magnetorheological Materials and Their Potential Applications
,”
J. Intell. Mater. Syst. Struct.
,
29
(
10
), pp.
2051
2095
.
4.
Chang
,
H.
,
Dai
,
J.
, and
Huang
,
J.
,
2018
, “
Magnetoelectric Generator Speed Control Based on Magnetorheological Grease
,”
J. Detect. Control
,
40
(
4
), pp.
57
61
.
5.
Kavlicoglu
,
B. M.
,
Gordaninejad
,
F.
, and
Wang
,
X.
,
2013
, “
Study of a Magnetorheological Grease Clutch
,”
Smart Mater. Struct.
,
22
(
12
), p.
125030
.
6.
Changsheng
,
Z.
,
2006
, “
Dynamic Behaviour of Shear-Type Magnetorheological Grease Damper Rotor System
,”
Chin. J. Mech. Eng.
,
42
(
10
), pp.
91
94
.
7.
Shiraishi
,
T.
,
Nagamatsu
,
S.
, and
Misaki
,
H.
,
2022
, “
High Dynamic Range and High Dispersion Stability of a Magnetorheological Grease Damper for Semi-active Vibration Suppression
,”
J. Intell. Mater. Syst. Struct.
,
33
(
3
), pp.
419
431
.
8.
Hartono
,
E. A.
,
Golubev
,
M.
, and
Chernoray
,
V.
,
2013
, “
PIV Study of Fluid Flow Inside a Gearbox, PIV13
,”
Proceedings of the 10th International Symposium on Particle Image Velocimetry
,
Delft, The Netherlands
,
July 1–3
, pp.
1
11
.
9.
Massini
,
D.
,
Fondelli
,
T.
,
Andreini
,
A.
,
Facchini
,
B.
,
Tarchi
,
L.
, and
Leonardi
,
F.
,
2018
, “
Experimental and Numerical Investigation on Windage Power Losses in High-Speed Gears
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p.
082508
.
10.
Noma
,
M.
, and
Mori
,
A.
,
2006
, “
Study on the Structures of Fluid Flows in the Annular Space Formed by a Submerged Tilting Pad Journal Bearing
,”
J. Vis.
,
9
(
4
), pp.
457
465
.
11.
Yeung
,
H.
,
Guo
,
Y.
,
Mann
,
J. B.
,
Dale Compton
,
W.
, and
Chandrasekar
,
S.
,
2016
, “
Effect of Low-Frequency Modulation on Deformation and Material Flow in Cutting of Metals
,”
ASME J. Tribol.
,
138
(
1
), p.
012201
.
12.
Green
,
T. M.
,
Baart
,
P.
,
Westerberg
,
L. G.
,
Lundstrom
,
T. S.
,
Hoglund
,
E.
, and
Lugt
,
P. M.
,
2007
, “
A New Method to Visualize Grease Flow in a Double Restriction Seal Using Microparticle Image Velocimetry
,”
Tribol. Trans.
,
54
(
5
), pp.
784
792
.
13.
Li
,
J. X.
,
Hoglund
,
E.
,
Westerberg
,
L. G.
,
Green
,
T. M.
,
Lundstrom
,
T. S.
, and
Lugt
,
P. M.
,
2012
, “
µPIV Measurement of Grease Velocity Profiles in Channels With Two Different Types of Flow Restrictions
,”
Tribol. Int.
,
54
, pp.
94
99
.
14.
Adebayo
,
D. S.
, and
Rona
,
A.
,
2015
, “
PIV Study of the Flow Across the Meridional Plane of Rotating Cylinders With Wide Gap
,”
Int. Rev. Aerosp. Eng.
,
8
(
1
), p.
26
.
15.
Lin
,
Q.
,
Wei
,
Z.
,
Wang
,
N.
,
Ma
,
S.
, and
Chen
,
W.
,
2015
, “
Visualisation Study on Flow Field of Bearing Lubrication
,”
Lubr. Sci.
,
27
(
2
), pp.
127
134
.
16.
Richardson
,
D.
,
Sadeghi
,
F.
,
Rateick
Jr,
R. G.
, and
Rowan
,
S.
,
2019
, “
Using µPIV to Investigate Fluid Flow in a Pocketed Thrust Bearing
,”
Tribol. Trans.
,
62
(
3
), pp.
350
361
.
17.
Yan
,
K.
,
Dong
,
L.
,
Zheng
,
J.
,
Li
,
B.
,
Wang
,
D.
, and
Sun
,
Y.
,
2018
, “
Flow Performance Analysis of Different Air Supply Methods for High Speed and Low Friction Ball Bearing
,”
Tribol. Int.
,
121
, pp.
94
107
.
18.
Baart
,
P.
,
Green
,
T. M.
,
Li
,
J. X.
,
Lundström
,
T. S.
,
Westerberg
,
L. G.
,
Höglund
,
E.
, and
Lugt
,
P. M.
,
2011
, “
The Influence of Speed, Grease Type, and Temperature on Radial Contaminant Particle Migration in a Double Restriction Seal
,”
Tribol. Trans.
,
54
(
6
), pp.
867
877
.
19.
Westerberg
,
L. G.
,
Lundström
,
T. S.
,
Höglund
,
E.
, and
Lugt
,
P. M.
,
2010
, “
Investigation of Grease Flow in a Rectangular Channel Including Wall Slip Effects Using Microparticle Image Velocimetry
,”
Tribol. Trans.
,
53
(
4
), pp.
600
609
.
20.
Sarkar
,
C.
,
Westerberg
,
L. G.
,
Höglund
,
E.
, and
Lundström
,
T. S.
,
2018
, “
Numerical Simulations of Lubricating Grease Flow in a Rectangular Channel With and Without Restrictions
,”
Tribol. Trans.
,
61
(
1
), pp.
144
156
.
21.
Maccioni
,
L.
,
Chernoray
,
V. G.
,
Bohnert
,
C.
, and
Concli
,
F.
,
2022
, “
Particle Image Velocimetry Measurements Inside a Tapered Roller Bearing With an Outer Ring Made of Sapphire: Design and Operation of an Innovative Test rig
,”
Tribol. Int.
,
165
, p.
107313
.
22.
Raj
,
A.
,
Sarkar
,
C.
, and
Pathak
,
M.
,
2021
, “
Thermal and Multiphase Flow Simulations of Polytetrafluoroethylene-Based Grease Flow in Restricted Geometry
,”
Proc. Inst. Mech. Eng. J: J. Eng. Tribol.
,
236
(
1
), pp.
80
89
.
23.
Augusto
,
L. L. X.
,
Sinatora
,
A.
,
Negrão
,
C. O. R.
, and
Cousseau
,
T.
,
2020
, “
A Numerical Investigation of Grease Friction Losses in Labyrinth Seals
,”
Tribol. Int.
,
141
, p.
105958
.
24.
Augusto
,
L. L. X.
,
Takahama
,
M. H.
,
Negrão
,
C. O. R.
, and
Cousseau
,
T.
,
2021
, “
The Effect of Viscous Dissipation and Heat Transfer on Friction Losses of Grease-Filled Labyrinth Seals
,”
Tribol. Int.
,
153
, p.
106571
.
25.
Wu
,
T.
,
Andrés
,
L. S.
, and
Lu
,
X.
,
2022
, “
Computational Fluid Dynamics Analysis of the Influence of Gas Content on the Rotordynamic Force Coefficients for a Circumferentially Grooved Annular Seal for Multiple Phase Pumps
,”
ASME J. Tribol.
,
144
(
11
), p.
111803
.
26.
Chaabane
,
R.
,
Bouras
,
A.
, and
Nasrallah
,
S. B.
,
2007
, “
Numerical Magnetohydrodynamic Flow Simulation of Velocity and Pressure for Electrically Conducting, Incompressible Fluids
,”
J. Braz. Soc. Mech. Sci. Eng.
,
29
(
3
), pp.
299
306
.
27.
Sohail
,
A.
,
Fatima
,
M.
,
Ellahi
,
R.
, and
Akram
,
K. B.
,
2019
, “
A Videographic Assessment of Ferrofluid During Magnetic Drug Targeting: an Application of Artificial Intelligence in Nanomedicine
,”
J. Mol. Liq.
,
285
, pp.
47
57
.
28.
Ellahi
,
R.
,
Sait
,
S. M.
,
Shehzad
,
N.
, and
Ayaz
,
Z.
,
2020
, “
A Hybrid Investigation on Numerical and Analytical Solutions of Electro-magnetohydrodynamics Flow of Nanofluid Through Porous Media With Entropy Generation
,”
Int. J. Numer. Methods Heat Fluid Flow
,
30
(
2
), pp.
834
854
.
29.
Khan
,
A. A.
,
Bukhari
,
S. R.
,
Marin
,
M.
, and
Ellahi
,
R.
,
2019
, “
Effects of Chemical Reaction on Third-Grade MHD Fluid Flow Under the Influence of Heat and Mass Transfer With Variable Reactive Index
,”
Heat Transfer Res.
,
50
(
11
), pp.
1061
1080
.
30.
Ellahi
,
R.
,
Zeeshan
,
A.
,
Shehzad
,
N.
, and
Alamri
,
S. Z.
,
2018
, “
Structural Impact of Kerosene-Al2O3 Nanoliquid on MHD Poiseuille Flow With Variable Thermal Conductivity: Application of Cooling Process
,”
J. Mol. Liq.
,
264
, pp.
607
615
.
31.
Ruhani
,
B.
,
Barnoon
,
P.
, and
Toghraie
,
D.
,
2019
, “
Statistical Investigation for Developing a New Model for Rheological Behavior of Silica–Ethylene Glycol/Water Hybrid Newtonian Nanofluid Using Experimental Data
,”
Phys. A: Stat. Mech. Appl.
,
525
, pp.
616
627
.
32.
Ahmadreza
,
B.
,
Toghraie
,
D.
, and
Hashemian
,
M.
,
2020
, “
A Comprehensive Experimental Investigation of Thermal Conductivity of a Ternary Hybrid Nanofluid Containing MWCNTs-Titania-Zinc Oxide/Water-Ethylene Glycol (80: 20) as Well as Binary and Mono Nanofluids
,”
Synth. Met.
,
268
, p.
116501
.
33.
Zeeshan
,
A.
,
Hussain
,
F.
,
Ellahi
,
R.
, and
Vafai
,
K.
,
2019
, “
A Study of Gravitational and Magnetic Effects on Coupled Stress Bi-phase Liquid Suspended With Crystal and Hafnium Particles Down in Steep Channel
,”
J. Mol. Liq.
,
286
, p.
110898
.
34.
Sukhwani
,
V. K.
, and
Hirani
,
H.
,
2008
, “
A Comparative Study of Magnetorheological-Fluid-Brake and Magnetorheological-Grease-Brake
,”
Trib. Online
,
3
(
1
), pp.
31
35
.
35.
Kavlicoglu
,
B. M.
,
Gordaninejad
,
F.
, and
Wang
,
X.
,
2013
, “
Study of a Magnetorheological Grease Clutch
,”
Smart Mater. Struct.
,
22
(
12
), p.
125030
.
36.
Gordaninejad
,
F.
,
Miller
,
M.
,
Wang
,
X.
,
Sahin
,
H.
, and
Fuchs
,
A.
,
2007
, “
Study of a Magnetorheological Grease (MRG) Damper
,”
Active and Passive Smart Structures and Integrated Systems
,
San Diego, CA
,
Mar. 19–22
, Vol.
6525
, p.
65250G
.
37.
Shah
,
K.
,
Choi
,
S. B.
, and
Choi
,
H. J.
,
2015
, “
Thermorheological Properties of Nano-magnetorheological Fluid in Dynamic Mode: Experimental Investigation
,”
Smart Mater. Struct.
,
24
(
5
), p.
057001
.
38.
Sahin
,
H.
,
Gordaninejad
,
F.
,
Wang
,
X.
, and
Fuchs
,
A.
,
2007
, “
Rheological Behavior of Magnetorheological Grease (MRG)
,”
Active and Passive Smart Structures and Integrated Systems
,
San Diego, CA
,
Mar. 19–22
,
International Society for Optics and Photonics
, Vol.
6525
, pp.
104
112
.
39.
Gedik
,
E.
,
Kurt
,
H.
,
Recebli
,
Z.
, and
Balan
,
C.
,
2012
, “
Two-Dimensional CFD Simulation of Magnetorheological Fluid Between Two Fixed Parallel Plates Applied External Magnetic Field
,”
Comput. Fluids
,
63
, pp.
128
134
.
40.
Raj
,
A.
,
Sarkar
,
C.
,
Kumar
,
P.
, and
Pathak
,
M.
,
2022
, “
Investigation of Magnetorheological Grease Flow Under the Influence of a Magnetic Field
,”
J. Mol. Liq.
,
361
, p.
119682
.
You do not currently have access to this content.