Abstract

The present study explores the performance of novel vegetable oil–based greases containing nano-CaCO3 as an additive. A series of greases with varying nanoparticle concentrations (0–4% w/w) are evaluated on a four-ball tester machine under a standard tribological test (ASTM D2266) and simultaneously in a rolling bearing at various speeds and loads against two commercial greases as the benchmark. The vibrations and shock pulse measurements are recorded to assess the bearing performance. The tribo-dynamic investigation suggests that the eco-friendly nano-greases are at par with the commercial ones; performance varies with the nanoparticle concentration. Under the tribological test, the third-body action of nanoparticles seems to increase friction, while the interfacial deposition (physisorption) of nano-CaCO3 and nano-CaO decreases wear. Under the bearing test, the rolling effect of nanoparticles seems to influence vibrations, while their entrainment in the contact zone governs the carpet values. The nano-grease containing 4% nano-CaCO3 performs best under both assessments, displaying great prospects of a sustainable and potential alternative to existing environmentally unfriendly greases.

References

1.
Mullett
,
G. W.
,
1973
, “
Grease Lubrication of Rolling Bearings
,”
Tribology
,
6
(
1
), pp.
21
28
.
2.
Lugt
,
P. M.
,
2009
, “
A Review on Grease Lubrication in Rolling Bearings
,”
Tribol. Trans.
,
52
(
4
), pp.
470
480
.
3.
WL 82 102/2 ED
,
1996
,
FAG Rolling Bearing Damage: Recognition of Damage and Bearing Inspection
,
FAG Bearings
,
Herzogenaurach, Germany
.
4.
Yusof
,
N. F. M.
, and
Ripin
,
Z. M.
,
2018
, “
The Effect of Lubrication on the Vibration of Roller Bearings
,”
MATEC Web. Conf.
,
217
,
01004
.
5.
Singh
,
T.
,
2020
, “
Grease Production Survey Report
,”
22nd Lubricating Grease Conference
,
NLGI India-Chapter, NLGI Missouri
.
6.
Hard
,
G. C.
,
2000
, “
Short-Term Adverse Effects in Humans of Ingested Mineral Oils, Their Additives and Possible Contaminants—A Review
,”
Hum. Exp. Toxicol.
,
19
(
3
), pp.
158
172
.
7.
Aluyor
,
E. O.
, and
Ori-Jesu
,
M.
,
2009
, “
Biodegradation of Mineral Oils—A Review
,”
African J. Biotechnol.
,
8
, pp.
915
920
.
8.
Fialová
,
J.
,
Samešová
,
D.
,
Mitterpach
,
J.
,
Schwarz
,
M.
,
Veverková
,
D.
, and
Hybská
,
H.
,
2018
, “
Assessment of Ecotoxicological Properties of Oils in Water
,”
Arch. Environ. Prot.
,
44
, pp.
31
37
.
9.
Carpenter
,
J. F.
,
1995
, “
Biodegradability and Toxicity of Polyalphaolefin Base Stocks
,”
J. Synth. Lubr.
,
12
(
1
), pp.
13
20
.
10.
Luna
,
F. M. T.
,
Rocha
,
B. S.
,
Rola
,
E. M.
,
Albuquerque
,
M. C. G.
,
Azevedo
,
D. C. S.
, and
Cavalcante
,
C. L.
,
2011
, “
Assessment of Biodegradability and Oxidation Stability of Mineral, Vegetable and Synthetic Oil Samples
,”
Ind. Crops Prod.
,
33
(
3
), pp.
579
583
.
11.
Aral
,
H.
, and
Vecchio-Sadus
,
A.
,
2008
, “
Toxicity of Lithium to Humans and the Environment—A Literature Review
,”
Ecotoxicol. Environ. Saf.
,
70
(
3
), pp.
349
356
.
12.
Gow
,
G.
,
2010
, “
Chemistry and Technology of Lubricants
,”
Chem. Technol. Lubr.
, pp.
411
432
.
13.
Kszos
,
L. A.
, and
Stewart
,
A. J.
,
2003
, “
Review of Lithium in the Aquatic Environment: Distribution in the United States, Toxicity and Case Example of Groundwater Contamination
,”
Ecotoxicology
,
12
(
5
), pp.
439
447
.
14.
Korosec
,
P. S.
,
Smith
,
D. W.
, and
Burrows
,
A. L.
,
1986
, “
Worldwide Environmental Regulations and Their Impact on Lubricant Additives
,”
SAE Tech. Pap.
,
1
.
15.
Herdan
,
J. M.
,
1997
, “
Lubricating Oil Additives and the Environment—An Overview
,”
Lubr. Sci.
,
9
(
2
), pp.
161
172
.
16.
Hsu
,
Y. L.
,
Lee
,
C. H.
, and
Kreng
,
V. B.
,
2009
, “
Analysis and Comparison of Regenerative Technologies of Waste Lubricant
,”
WSEAS Trans. Environ. Dev.
,
5
, pp.
295
309
.
17.
Mobarak
,
H. M.
,
Niza Mohamad
,
E.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Al Mahmud
,
K. A. H.
,
Habibullah
,
M.
, and
Ashraful
A. M.
,
2014
, “
The Prospects of Biolubricants as Alternatives in Automotive Applications
,”
Renew. Sustain. Energy Rev.
,
33
, pp.
34
43
.
18.
Shankar
,
S.
,
Manikandan
,
M.
,
Raja
,
G.
, and
Pramanik
,
A.
,
2020
, “
Experimental Investigations of Vibration and Acoustics Signals in Milling Process Using Kapok Oil as Cutting Fluid
,”
Mech. Ind.
,
21
(
5
),
521
.
19.
Shankar
,
S.
,
Mohanraj
,
T.
, and
Ponappa
,
K.
,
2017
, “
Influence of Vegetable Based Cutting Fluids on Cutting Force and Vibration Signature During Milling of Aluminium Metal Matrix Composites
,”
J. Tribol.
,
12
, pp.
1
17
.
20.
Srivastava
,
A.
, and
Sahai
,
P.
,
2013
, “
Vegetable Oils as Lube Basestocks: A Review
,”
African J. Biotechnol.
,
12
, pp.
880
891
.
21.
Panchal
,
T. M.
,
Patel
,
A.
,
Chauhan
,
D. D.
,
Thomas
,
M.
, and
Patel
,
J. V.
,
2017
, “
A Methodological Review on Bio-Lubricants From Vegetable Oil Based Resources
,”
Renew. Sustain. Energy Rev.
,
70
, pp.
65
70
.
22.
Chtourou
,
M.
,
Frikha
,
M. H.
, and
Trabelsi
,
M.
,
2006
, “
Modified Smectitic Tunisian Clays Used in the Formulation of High Performance Lubricating Greases
,”
Appl. Clay Sci.
,
32
(
3–4
), pp.
210
216
.
23.
Martín-Alfonso
,
J. E.
,
Martín-Alfonso
,
M. J.
,
Valencia
,
C.
, and
Cuberes
,
M. T.
,
2021
, “
Rheological and Tribological Approaches as a Tool for the Development of Sustainable Lubricating Greases Based on Nano-Montmorillonite and Castor Oil
,”
Friction
,
9
(
2
), pp.
415
428
.
24.
Gorbacheva
,
S. N.
,
Yarmush
,
Y. M.
, and
Ilyin
,
S. O.
,
2020
, “
Rheology and Tribology of Ester-Based Greases With Microcrystalline Cellulose and Organomodified Montmorillonite
,”
Tribol. Int.
,
148
,
106318
.
25.
Sánchez
,
M. C.
,
Núñez
,
N.
,
Franco
,
J. M.
,
Valencia
,
C.
, and
Martín-Alfonso
,
J. E.
,
2012
, “
Rheology of New Green Lubricating Grease Formulations Containing Cellulose Pulp and Its Methylated Derivative as Thickener Agents
,”
Ind. Crops Prod.
,
37
(
1
), pp.
500
507
.
26.
Gorbacheva
,
S. N.
,
Yadykova
,
A. Y.
, and
Ilyin
,
S. O.
,
2021
, “
Rheological and Tribological Properties of Low-Temperature Greases Based on Cellulose Acetate Butyrate Gel
,”
Carbohydr. Polym.
,
272
, p.
118509
.
27.
Shetty
,
P.
,
Mu
,
L.
, and
Shi
,
Y.
,
2020
, “
Polyelectrolyte Cellulose Gel With PEG/Water: Toward Fully Green Lubricating Grease
,”
Carbohydr. Polym.
,
230
, p.
115670
.
28.
Li
,
J.
,
Lin
,
N.
,
Du
,
C.
,
Ge
,
Y.
,
Amann
,
T.
,
Feng
,
H.
, and
Yuan
,
C.
,
2022
, “
Tribological Behavior of Cellulose Nanocrystal as an Eco-Friendly Additive in Lithium-Based Greases
,”
Carbohydr. Polym.
,
290
,
119478
.
29.
Dai
,
Y.
,
Xu
,
H.
, and
Dong
,
J.
,
2018
, “
Lubrication Performance of α-Zirconium Phosphates as an Anti-Wear Additive in Vegetable Oil-Based Anhydrous Calcium Grease
,”
Lubricants
,
6
(
3
),
63
.
30.
Zhao
,
J.
,
Gao
,
T.
,
Dang
,
J.
,
Cao
,
W.
,
Wang
,
Z.
,
Li
,
S.
, and
Shi
,
Y.
,
2022
, “
Using Green, Economical, Efficient Two-Dimensional (2D) Talc Nanosheets as Lubricant Additives Under Harsh Conditions
,”
Nanomaterials
,
12
(
10
),
1666
31.
Saxena
,
A.
,
Kumar
,
D.
,
Tandon
,
N.
,
Kaur
,
T.
, and
Singh
,
N.
,
2022
, “
Development of Vegetable Oil-Based Greases for Extreme Pressure Applications : An Integration of Non-Toxic, Eco-Friendly Ingredients for Enhanced Performance
,”
Tribol. Lett.
,
70
(
4
), pp.
1
16
.
32.
Zhang
,
M.
,
Wang
,
X.
,
Fu
,
X.
, and
Xia
,
Y.
,
2009
, “
Performance and Anti-Wear Mechanism of CaCO3 Nanoparticles as a Green Additive in Poly-Alpha-Olefin
,”
Tribol. Int.
,
42
(
7
), pp.
1029
1039
.
33.
Ji
,
X.
,
Chen
,
Y.
,
Zhao
,
G.
,
Wang
,
X.
, and
Liu
,
W.
,
2011
, “
Tribological Properties of CaCO3 Nanoparticles as an Additive in Lithium Grease
,”
Tribol. Lett.
,
41
(
1
), pp.
113
119
.
34.
Singh
,
J.
,
Kumar
,
D.
, and
Tandon
,
N.
,
2017
, “
Development of Nanocomposite Grease: Microstructure, Flow, and Tribological Studies
,”
ASME J. Tribol.
,
139
(
5
), p. 052001.
35.
Singh
,
J.
,
Kumar
,
D.
, and
Tandon
,
N.
,
2018
, “
Tribological and Vibration Studies on Newly Developed Nanocomposite Greases Under Boundary Lubrication Regime
,”
ASME J. Tribol.
,
140
(
3
), p.
032001
.
36.
Singh
,
J.
,
Kumar
,
D.
, and
Tandon
,
N.
,
2019
, “
Rheological and Film Forming Behavior of the Developed Nanocomposite Greases Under Elastohydrodynamics Lubrication Regime
,”
ASME J. Tribol.
,
141
(
2
), p.
021804
.
37.
Singh
,
J.
,
Kumar
,
D.
, and
Tandon
,
N.
,
2019
, “
Tribo-Dynamics of Nanocomposite Grease Lubricated Point Contact Under Elastohydrodynamics Lubrication Regime
,”
ASME J. Tribol.
,
141
(
3
), p.
031501
.
38.
Lauth
,
V.
,
Maas
,
M.
, and
Rezwan
,
K.
,
2017
, “
An Evaluation of Colloidal and Crystalline Properties of CaCO3 Nanoparticles for Biological Applications
,”
Mater. Sci. Eng. C
,
78
, pp.
305
314
.
39.
Kim
,
S. K.
,
Foote
,
M. B.
, and
Huang
,
L.
,
2013
, “
Targeted Delivery of EV Peptide to Tumor Cell Cytoplasm Using Lipid Coated Calcium Carbonate Nanoparticles
,”
Cancer Lett.
,
334
(
2
), pp.
311
318
.
40.
Saxena
,
A.
,
Kumar
,
D.
, and
Tandon
,
N.
,
2022
, “
Development of Lubricious Environmentally Friendly Greases Using Synergistic Natural Resources : A Potential Alternative to Mineral Oil-Based Greases
,”
J. Clean. Prod.
,
380
, p.
135047
.
41.
Saxena
,
A.
,
Kumar
,
D.
, and
Tandon
,
N.
,
2022
, “
Unexplored Potential of Acacia and Guar Gum to Develop Bio-Based Greases With Impressive Tribological Performance: A Possible Alternative to Mineral Oil-Based Greases
,”
Renew. Energy
,
200
, pp.
505
515
.
42.
Vafaei
,
S.
,
Jopen
,
M.
,
Jacobs
,
G.
,
König
,
F.
, and
Weberskirch
,
R.
,
2022
, “
Synthesis and Tribological Behavior of Bio-Based Lubrication Greases With Bio-Based Polyester Thickener Systems
,”
J. Clean. Prod.
,
364
,
132659
.
43.
Wu
,
C.
,
Xiong
,
R.
,
Ni
,
J.
,
Yao
,
L.
,
Chen
,
L.
, and
Li
,
X.
,
2020
, “
Effects of CuO Nanoparticles on Friction and Vibration Behaviors of Grease on Rolling Bearing
,”
Tribol. Int.
,
152
, p.
106552
.
44.
Lugt
,
P. M.
,
2012
,
Grease Lubrication in Rolling Bearings
,
John Wiley & Sons
,
Chichester, UK
.
45.
Tandon
,
N.
, and
Parey
,
A.
,
2006
, “
Condition Monitoring of Rotary Machines
,” pp.
109
136
.
46.
Tandon
,
N.
,
Yadava
,
G. S.
, and
Ramakrishna
,
K. M.
,
2007
, “
A Comparison of Some Condition Monitoring Techniques for the Detection of Defect in Induction Motor Ball Bearings
,”
Mech. Syst. Signal Process
,
21
(
1
), pp.
244
256
.
47.
Tandon
,
N.
,
Ramakrishna
,
K. M.
, and
Yadava
,
G. S.
,
2007
, “
Condition Monitoring of Electric Motor Ball Bearings for the Detection of Grease Contaminants
,”
Tribol. Int.
,
40
(
1
), pp.
29
36
.
48.
Tandon
,
N.
, and
Choudhury
,
A.
,
1999
, “
Review of Vibration and Acoustic Measurement Methods for the Detection of Defects in Rolling Element Bearings
,”
Tribol. Int.
,
32
(
8
), pp.
469
480
.
49.
Wang
,
B.
,
Qiu
,
F.
,
Barber
,
G. C.
,
Zou
,
Q.
,
Wang
,
J.
,
Guo
,
S.
,
Yuan
,
Y.
, and
Jiang
,
Q.
,
2022
, “
Role of Nano-Sized Materials as Lubricant Additives in Friction and Wear Reduction: A Review
,”
Wear
,
490–491
, p.
204206
.
50.
Standards
,
A.
,
2011
, “
Standard Test Method for Wear Preventive Characteristics of Lubricating Fluid (Four-Ball Method)
,”
Annu. B ASTM Stand.
,
94
, pp.
1
5
.
51.
Choudhury
,
A.
, and
Tandon
,
N.
,
2000
, “
Application of Acoustic Emission Technique for the Detection of Defects in Rolling Element Bearings
,”
Tribol. Int.
,
33
(
1
), pp.
39
45
.
52.
Tandon
,
N.
, and
Nakra
,
B. C.
,
1992
, “
Comparison of Vibration and Acoustic Measurement Techniques for the Condition Monitoring of Rolling Element Bearings
,”
Tribol. Int.
,
25
(
3
), pp.
205
212
.
53.
Ramamurthy
,
S.
,
Krousgrill
,
C. M.
, and
Sadeghi
,
F.
,
2000
, “
Vibration in Grease Lubricated Bearing Systems
,”
Tribol. Trans.
,
43
(
3
), pp.
403
410
.
54.
Cen
,
H.
, and
Lugt
,
P. M.
,
2019
, “
Film Thickness in a Grease Lubricated Ball Bearing
,”
Tribol. Int.
,
134
, pp.
26
35
.
55.
Jablonka
,
K.
,
Glovnea
,
R.
, and
Bongaerts
,
J.
,
2018
, “
Quantitative Measurements of Film Thickness in a Radially Loaded Deep-Groove Ball Bearing
,”
Tribol. Int.
,
119
, pp.
239
249
.
56.
Kanazawa
,
Y.
,
De Laurentis
,
N.
, and
Kadiric
,
A.
,
2020
, “
Studies of Friction in Grease-Lubricated Rolling Bearings Using Ball-on-Disc and Full Bearing Tests
,”
Tribol. Trans.
,
63
(
1
), pp.
77
89
.
57.
Maru
,
M. M.
,
Castillo
,
R. S.
, and
Padovese
,
L. R.
,
2007
, “
Study of Solid Contamination in Ball Bearings Through Vibration and Wear Analyses
,”
Tribol. Int.
,
40
(
3
), pp.
433
440
.
58.
Saxena
,
A.
,
Kumar
,
D.
, and
Tandon
,
N.
,
2021
, “
Development of Eco-Friendly Nano-Greases Based on Vegetable Oil: An Exploration of the Character via Structure
,”
Ind. Crops Prod.
,
172
, p.
114033
.
59.
Martín-Alfonso
,
J. E.
,
Moreno
,
G.
,
Valencia
,
C.
,
Sánchez
,
M. C.
,
Franco
,
J. M.
, and
Gallegos
,
C.
,
2009
, “
Influence of Soap/Polymer Concentration Ratio on the Rheological Properties of Lithium Lubricating Greases Modified With Virgin LDPE
,”
J. Ind. Eng. Chem.
,
15
(
5
), pp.
687
693
.
60.
Sánchez
,
M. C.
,
Franco
,
J. M.
,
Valencia
,
C.
,
Gallegos
,
C.
,
Urquiola
,
F.
, and
Urchegui
,
R.
,
2011
, “
Atomic Force Microscopy and Thermo-Rheological Characterisation of Lubricating Greases
,”
Tribol. Lett.
,
41
(
2
), pp.
463
470
.
61.
Kuriyavar
,
S. I.
,
Vetrivel
,
R.
,
Hegde
,
S. G.
,
Ramaswamy
,
A. V.
,
Chakrabarty
,
D.
, and
Mahapatra
,
S.
,
2000
, “
Insights Into the Formation of Hydroxyl Ions in Calcium Carbonate: Temperature Dependent FTIR and Molecular Modelling Studies
,”
J. Mater. Chem.
,
10
(
8
), pp.
1835
1840
.
62.
Plav
,
B.
,
Kobe
,
S.
, and
Orel
,
B.
,
1999
, “
Identification of Crystallization Forms of CaCO3 With FTIR Spectroscopy
,”
Kovine Zlitine Tehnol.
,
33
, pp.
517
521
.
63.
Habte
,
L.
,
Shiferaw
,
N.
,
Mulatu
,
D.
, and
Thenepalli
,
T.
,
2019
, “
Synthesis of Nano-Calcium Oxide From Waste Eggshell by Sol-Gel Method
,”
Sustainability
,
11
, pp.
1
10
.
64.
Alves
,
S. M.
,
Barros
,
B. S.
,
Trajano
,
M. F.
,
Ribeiro
,
K. S. B.
, and
Moura
,
E.
,
2013
, “
Tribological Behavior of Vegetable Oil-Based Lubricants With Nanoparticles of Oxides in Boundary Lubrication Conditions
,”
Tribol. Int.
,
65
, pp.
28
36
.
65.
Wu
,
C.
,
Yang
,
K.
,
Ni
,
J.
,
Lu
,
S.
,
Yao
,
L.
, and
Li
,
X.
,
2023
, “
Investigations for Vibration and Friction Torque Behaviors of Thrust Ball Bearing With Self-Driven Textured Guiding Surface
,”
Friction
,
11
(
6
), pp.
894
910
.
66.
Wu
,
C.
,
Xiong
,
R.
,
Ni
,
J.
,
Teal
,
P. D.
,
Cao
,
M.
, and
Li
,
X.
,
2020
, “
Effect of Grease on Bearing Vibration Performance Caused by Short-Time High-Temperature Exposure
,”
J. Brazilian Soc. Mech. Sci. Eng.
,
42
(
1
), pp.
1
12
.
67.
Wu
,
C.
,
Yang
,
K.
,
Chen
,
Y.
,
Ni
,
J.
,
Yao
,
L.
, and
Li
,
X.
,
2021
, “
Investigation of Friction and Vibration Performance of Lithium Complex Grease Containing Nano-Particles on Rolling Bearing
,”
Tribol. Int.
,
155
, p.
106761
.
68.
SKF
,
2013
,
Rolling Bearings Catalogue 10000 EN
,
SKF Group
,
Sweden
.
69.
Chatra
K. R. S.
, and
Lugt
,
P. M.
,
2021
, “
The Process of Churning in a Grease Lubricated Rolling Bearing: Channeling and Clearing
,”
Tribol. Int.
,
153
, p.
106661
.
70.
De Laurentis
,
N.
,
Cann
,
P.
,
Lugt
,
P. M.
, and
Kadiric
,
A.
,
2017
, “
The Influence of Base Oil Properties on the Friction Behaviour of Lithium Greases in Rolling/Sliding Concentrated Contacts
,”
Tribol. Lett.
,
65
(
4
), pp.
1
16
.
71.
Dai
,
W.
,
Kheireddin
,
B.
,
Gao
,
H.
, and
Liang
,
H.
,
2016
, “
Roles of Nanoparticles in Oil Lubrication
,”
Tribol. Int.
,
102
, pp.
88
98
.
72.
Sharma
,
K. A.
,
Tiwari
,
A. K.
, and
Dixit
,
A. R.
,
2015
, “
Mechanism of Nanoparticles Functioning and Effects in Machining Processes: A Review
,”
Mater. Today Proc.
,
2
(
4–5
), pp.
3539
3544
.
73.
Singh
,
A.
,
Chauhan
,
P.
, and
Mamatha
,
T. G.
,
2019
, “
A Review on Tribological Performance of Lubricants With Nanoparticles Additives
,”
Mater. Today Proc.
,
25
, pp.
586
591
.
74.
Rastegari
,
A.
, and
Bengtsson
,
M.
,
2015
, “
Implementation of Condition Based Maintenance in Manufacturing Industry—A Pilot Case Study
,”
International Conference of Prognostics and Health Management
, pp.
1
8
.
75.
Vijayanand
,
V.
,
2003
, “
Condition Monitoring of Antifriction Bearing Using Shock Pulse Method
,”
IPPTA
,
15
(
3
), pp.
109
113
.
76.
Wu
,
C.
,
Xie
,
Y.
,
Zhao
,
H.
,
Yang
,
H.
,
Li
,
X.
, and
Ni
,
J.
,
2022
, “
Effects of hBN and CaCO3 Nanoparticles on Tribological and Vibration Properties of Polyurea Grease on Rolling Bearing
,”
Tribol. Lett.
,
70
(
3
), pp.
1
14
.
You do not currently have access to this content.