Abstract

Nowadays, most studies of the dynamic characteristics of annular gaps focus only on the force characteristics due to translational motions, while the tilt and moment coefficients are less well studied. To expand the knowledge of the additional coefficients, we investigate both the dynamic force and the dynamic and moment characteristics of annular gaps. First, the rotordynamic influence of annular gaps is recapitulated. Second, a new simulation method is presented, using a perturbed integro-differential approach in combination with a Hirs’ model and power law ansatz functions for the velocity profiles to calculate the dynamic force and moment characteristics. Subsequently, an extensive parameter study is carried out. To evaluate whether the hydraulic tilt and moment coefficients need to be considered, an effective stiffness is defined and the influence of the annulus length, an eccentrically operated shaft, the center of rotation, a modified Reynolds number, the flow number, and the pre-swirl is investigated. It is shown that despite the annulus length, the flow number as well a modified Reynolds number are crucial for the relevance of the additional coefficients. This leads to a simple three-dimensional diagram, which makes it possible to assess the necessity of including the additional coefficients on the basis of the three variables.

References

1.
Childs
,
D. W.
,
1983
, “
Finite-Length Solutions for Rotordynamic Coefficients of Turbulent Annular Seals
,”
ASME J. Lubr. Technol.
,
105
(
3
), pp.
437
444
.
2.
Childs
,
D. W.
,
1983
, “
Dynamic Analysis of Turbulent Annular Seals Based on Hirs’ Lubrication Equation
,”
ASME J. Lubr. Technol.
,
105
(
3
), pp.
429
436
.
3.
Childs
,
D. W.
,
1993
,
Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis
,
A Wiley Interscience Publication
,
New York
.
4.
San Andrés
,
L.
,
1991
, “
Analysis of Variable Fluid Properties, Turbulent Annular Seals
,”
ASME J. Tribol.
,
113
(
4
), pp.
694
702
.
5.
San Andrés
,
L.
,
1993
, “
The Effect of Journal Misalignment on the Operation of a Turbulent Flow Hydrostatic Bearing
,”
ASME J. Tribol.
,
115
(
3
), pp.
355
363
.
6.
San Andrés
,
L.
,
1993
, “
Effect of Shaft Misalignment on the Dynamic Force Response of Annular Pressure Seals
,”
Tribol. Trans.
,
36
(
2
), pp.
173
182
.
7.
San Andrés
,
L.
,
1993
, “
Dynamic Force and Moment Coefficients for Short Length Annular Seals
,”
ASME J. Tribol.
,
115
(
1
), pp.
61
70
.
8.
Tiwari
,
R.
,
2018
,
Rotor Systems: Analysis and Identification
, 1st ed.,
CRC Press
,
Boca Raton, FL
.
9.
Gasch
,
R.
,
Nordmann
,
R.
, and
Pfützner
,
H.
,
2002
,
Rotordynamik
, 2, vollst. neubearb. und erw. aufl. ed.,
Springer
,
Berlin
.
10.
Gülich
,
J. F.
,
2010
,
Kreiselpumpen: Handbuch für Entwicklung, Anlagenplanung und Betrieb
, 3rd ed.,
Springer-Verlag
,
Berlin
.
11.
Kuhr
,
M. M. G.
,
Lang
,
S. R.
, and
Pelz
,
P. F.
,
2022
, “
Static Force Characteristic of Annular Gaps—Experimental and Simulation Results
,”
ASME J. Tribol.
,
144
(
11
), p.
111804
.
12.
Al-Qutub
,
A. M.
,
Elrod
,
D. A.
, and
Coleman
,
H. W.
,
2000
, “
A New Friction Factor Model and Entrance Loss Coefficient for Honeycomb Annular Gas Seals
,”
ASME J. Tribol.
,
122
(
3
), pp.
622
627
.
13.
Amoser
,
M.
,
1995
, “
Strömungsfelder und radikalkräfte in labyrinthdichtungen hydraulischer strömungsmaschinen
,” Dissertation, Eidgenössische Technische Hochschule Zürich, Zürich.
14.
Arghir
,
M.
, and
Frêne
,
J.
,
2001
, “
A Triangle Based Finite Volume Method for the Integration of Lubrication’s Incompressible Bulk Flow Equations
,”
ASME J. Tribol.
,
123
(
1
), pp.
118
124
.
15.
Arghir
,
M.
, and
Frêne
,
J.
,
2004
, “
A Bulk-Flow Analysis of Static and Dynamic Characteristics of Eccentric Circumferentially-Grooved Liquid Annular Seals
,”
ASME J. Tribol.
,
126
(
2
), pp.
316
325
.
16.
Childs
,
D. W.
,
Nolan
,
S. A.
, and
Kilgore
,
J. J.
,
1990
, “
Test Results for Turbulent Annular Seals, Using Smooth Rotors and Helically Grooved Stators
,”
ASME J. Tribol.
,
112
(
2
), pp.
254
258
.
17.
Childs
,
D. W.
,
Shin
,
Y.-S.
, and
Seifert
,
B.
,
2008
, “
A Design to Improve the Effective Damping Characteristics of Hole-Pattern-Stator Annular Gas Seals
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
012505
.
18.
Moreland
,
J. A.
,
Childs
,
D. W.
, and
Bullock
,
J. T.
,
2018
, “
Measured Static and Rotordynamic Characteristics of a Smooth-Stator/Grooved-Rotor Liquid Annular Seal
,”
ASME J. Fluids Eng.
,
140
(
10
), p.
101109
.
19.
Dietzen
,
F.-J.
,
1988
,
Bestimmung der dynamischen Koeffizienten von Dichtspalten mit Finite-Differenzen-Verfahren
,
VDI-Verlag
,
Düsseldorf
.
20.
Nordmann
,
R.
,
Dietzen
,
F.-J.
,
Janson
,
W.
,
Frei
,
A.
, and
Florjancic
,
S.
,
1987
, “
Coefficients and Leakage of Parallel Grooved and Smooth Seals
,”
NASA, Lewis Research Center, Rotordynamic Instability Problems in High-Performance Turbomachinery
, pp.
129
153
.
21.
Nordmann
,
R.
,
Dietzen
,
F.-J.
, and
Weiser
,
H.-P.
,
1986
, “
Calculation of Rotordynamic Coefficients and Leakage for Annular Gas Seals by Means of Finite Difference Techniques
,”
ASME J. Tribol.
,
111
(
3
), pp.
545
552
.
22.
Nordmann
,
R.
,
1984
, “Identification of Stiffness and Damping Coefficients of Journal Bearings by Means of the Impact Method,”
Dynamics of Rotors
,
O.
Mahrenholtz
, ed.,
Springer Vienna
,
Vienna
, pp.
395
409
.
23.
San Andrés
,
L.
,
2006
, “
Hydrodynamic Fluid Film Bearings and Their Effect on the Stability of Rotating Machinery
,” Class Notes.
24.
San Andrés
,
L.
,
Wu
,
T.
,
Maeda
,
H.
, and
Tomoki
,
O.
,
2018
, “
A Computational Fluid Dynamics Modified Bulk Flow Analysis for Circumferentially Shallow Grooved Liquid Seals
,”
ASME J. Eng. Gas Turbines Power
,
140
(
1
), p.
012504
.
25.
Constantinescu
,
V.
, and
Galetuse
,
S.
,
1982
, “
Operating Characteristics of Journal `Bearings in Turbulent Inertial Flow
,”
ASME J. Lubr. Technol.
,
104
(
2
), pp.
173
179
.
26.
Glienicke
,
J.
,
1967
,
Feder-Und Dämpfungskonstanten von Gleitlagern für Turbomaschinen und deren Einfluß auf das Schwingungsverhalten eines einfachen
, Rotors Dissertation, Forschungsvereinigung Verbrennungskraftmaschinen, Frankfurt am Main.
27.
Frêne
,
J.
,
Arghir
,
M.
, and
Constantinescu
,
V.
,
2006
, “
Combined Thin-Film and Navier–Stokes Analysis in High Reynolds Number Lubrication
,”
Tribol. Int.
,
39
(
8
), pp.
734
747
.
28.
Feng
,
H.
, and
Jiang
,
S.
,
2017
, “
Dynamics of a Motorized Spindle Supported on Water-Lubricated Bearings
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
231
(
3
), pp.
459
472
.
29.
Yuan
,
X.
,
Zhang
,
G.
,
Li
,
B.
, and
Miao
,
X.
,
2006
, “
Theoretical and Experimental Results of Water-Lubricated, High-Speed, Short-Capillary-Compensated Hybrid Journal Bearings
,”
International Joint Tribology Conference
,
San Antonio, TX
,
Oct. 23–25
, pp.
391
398
.
30.
Feng
,
H.
,
Jiang
,
S.
, and
Ji
,
A.
,
2019
, “
Investigations of the Static and Dynamic Characteristics of Water-Lubricated Hydrodynamic Journal Bearing Considering Turbulent, Thermohydrodynamic and Misaligned Effects
,”
Tribol. Int.
,
130
, pp.
245
260
.
31.
Wang
,
L.
,
Pei
,
S.
,
Xiong
,
X.
, and
Xu
,
H.
,
2013
, “
Investigation of the Combined Influence of Turbulence and Thermal Effects on the Performance of Water-lubricated Hybrid Bearings With Circumferential Grooves and Stepped Recesses
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
228
(
1
), pp.
53
68
.
32.
Dousti
,
S.
,
Allaire
,
P. E.
,
Dimond
,
T.
, and
Cao
,
J.
,
2016
, “
An Extended Reynold Equation Applicable to High Reduced Reynolds Number Operation of Journal Bearings
,”
Tribol. Int.
,
102
, pp.
182
197
.
33.
Tiwari
,
R.
,
Manikandan
,
S.
, and
Dwivedy
,
S. K.
,
2005
, “
A Review of the Experimental Estimation of the Rotor Dynamic Parameters of Seals
,”
Shock Vib. Dig.
,
37
(
4
), pp.
261
284
.
34.
Tiwari
,
R.
,
Lees
,
A. W.
, and
Friswell
,
M. I.
,
2004
, “
Identification of Dynamic Bearing Parameters: A Review
,”
Shock Vib. Dig.
,
36
(
2
), pp.
99
124
.
35.
Childs
,
D. W.
,
Nelson
,
C. C.
,
Noyes
,
T.
, and
Dressman
,
J. B.
,
1982
, “
A High-Reynolds-Number Seal Test Facility: Facility Description and Preliminary Test Data
,”
NASA, Lewis Research Center Rotordyn. Instability Probl. in High-Performance Turbomachinery
.
36.
Simon
,
F.
, and
Frêne
,
J.
,
1992
, “
Rotordynamic Coefficients for Turbulent Annular Misaligned Seals
,”
Third International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-3)
,
Honolulu, HI
,
Apr. 1–4
, pp.
207
222
.
37.
Nordmann
,
R.
, and
Dietzen
,
F.-J.
,
1988
, “
Finite Difference Analysis of Rotordynamic Seal Coefficients for an Eccentric Shaft Position
,”
NASA, Lewis Research Center, Rotordynamic Instability Problems in High-Performance Turbomachinery
, pp.
269
284
.
38.
Nelson
,
C. C.
, and
Nguyen
,
D. T.
,
1988
, “
Analysis of Eccentric Annular Incompressible Seals: Part 1—A New Solution Using Fast Fourier Transforms for Determining Hydrodynamic Force
,”
ASME J. Tribol.
,
110
(
2
), pp.
354
359
.
39.
Simon
,
F.
, and
Frêne
,
J.
,
1992
, “
Analysis for Incompressible Flow in Annular Pressure Seals
,”
ASME J. Tribol.
,
114
(
3
), pp.
431
438
.
40.
Schäfer
,
M.
,
2006
,
Computational Engineering: Introduction to Numerical Methods
, 1st ed.,
Springer
,
Berlin
.
41.
Kanemori
,
Y.
, and
Iwatsubo
,
T.
,
1992
, “
Experimental Study of Dynamic Fluid Forces and Moments for a Long Annular Seal
,”
ASME J. Tribol.
,
114
(
4
), pp.
773
778
.
42.
Kanemori
,
Y.
, and
Iwatsubo
,
T.
,
1994
, “
Rotordynamic Analysis of Submerged Motor Pumps: Influence of Long Seal on the Stability of Fluid Machinery
,”
JSME Int. J. Ser. C Dyn. Contr. Rob. Des. Manuf.
,
37
(
1
), pp.
193
201
.
43.
Kanemori
,
Y.
, and
Iwatsubo
,
T.
,
1994
, “
Forces and Moments due to Combined Motion of Conical and Cylindrical Whirls for a Long Seal
,”
ASME J. Tribol.
,
116
(
3
), pp.
489
498
.
44.
Hirs
,
G. G.
,
1973
, “
A Bulk-Flow Theory for Turbulence in Lubricant Films
,”
ASME J. Lubr. Technol.
,
95
(
2
), pp.
137
145
.
45.
Nelson
,
C. C.
, and
Nguyen
,
D. T.
,
1988
, “
Analysis of Eccentric Annular Incompressible Seals: Part 2—Effects of Eccentricity on Rotordynamic Coefficients
,”
ASME J. Tribol.
,
110
(
2
), pp.
361
366
.
You do not currently have access to this content.