Abstract

Surface wear is one of the major causes of damage to wire ropes in multilayer winding systems. This damage leads to performance degradation and affects the service safety of wire rope. To reveal the wear evolution and the performance degradation of wire rope in service, the correlations between the wear characteristic parameters and the residual strength were investigated. The results show that the variation in the wear parameters is affected by the wear distribution and the structure of the wire rope. The main wear mechanisms between wire ropes are adhesion wear and abrasive wear. Different wear parameters should be combined to evaluate the wear state of the wire rope. The tensile temperature rise could accurately reflect the wear evolution of the in-service wire rope under the condition of a large wear degree. The negative correlation between the residual strength and the wear area of the damaged rope samples is the strongest.

References

1.
Singh
,
R. P.
,
Mallick
,
M.
, and
Verma
,
M. K.
,
2016
, “
Studies on Failure Behaviour of Wire Rope Used in Underground Coal Mines
,”
Eng. Failure Anal.
,
70
, pp.
290
304
.
2.
Cruzado
,
A.
,
Hartelt
,
M.
,
Wäsche
,
R.
, and
Urchegui
,
M.
,
2010
, “
Fretting Wear of Thin Steel Wires. Part 1: Influence of Contact Pressure
,”
Wear
,
268
(
11–12
), pp.
1409
1416
.
3.
Shen
,
Y.
,
Zhang
,
D.
,
Duan
,
J.
, and
Wang
,
D.
,
2011
, “
Fretting Wear Behaviors of Steel Wires Under Friction-Increasing Grease Conditions
,”
Tribol. Int.
,
44
(
11
), pp.
1511
1517
.
4.
Chang
,
X. D.
,
Peng
,
Y. X.
,
Zhu
,
Z. C.
,
Gong
,
X. S.
,
Yu
,
Z. F.
,
Mi
,
Z. T.
, and
Xu
,
C. M.
,
2018
, “
Experimental Investigation of Mechanical Response and Fracture Failure Behavior of Wire Rope With Different Given Surface Wear
,”
Tribol. Int.
,
119
, pp.
208
221
.
5.
Kaczmarczyk
,
S.
, and
Ostachowicz
,
W.
,
2003
, “
Transient Vibration Phenomena in Deep Mine Hoisting Cables. Part 1: Mathematical Model
,”
J. Sound Vib.
,
262
(
2
), pp.
219
244
.
6.
Zhang
,
J.
,
Wang
,
D.
,
Zhang
,
D.
,
Ge
,
S.
, and
Wang
,
D.
,
2017
, “
Dynamic Torsional Characteristics of Mine Hoisting Rope and Its Internal Spiral Components
,”
Tribol. Int.
,
109
, pp.
182
191
.
7.
Wang
,
D.
,
Zhang
,
J.
,
Ge
,
S.
,
Zhang
,
D.
, and
Shi
,
G.
,
2019
, “
Mechanical Behavior of Hoisting Rope in 2 Km Ultra Deep Coal Mine
,”
Eng. Failure Anal.
,
106
, p.
104185
.
8.
Chen
,
Y.
,
Meng
,
F.
, and
Gong
,
X.
,
2017
, “
Full Contact Analysis of Wire Rope Strand Subjected to Varying Loads Based on Semi-Analytical Method
,”
Int. J. Solids Struct.
,
117
, pp.
51
66
.
9.
Chen
,
Y.
, and
Meng
,
F.
,
2018
, “
Numerical Study on Wear Evolution and Mechanical Behavior of Steel Wires Based on Semi-Analytical Method
,”
Int. J. Mech. Sci.
,
148
, pp.
684
697
.
10.
Chen
,
Y.
,
Zhang
,
Y.
, and
Qin
,
W.
,
2019
, “
Mechanical Analysis of Non-Perpendicularly Crossed Steel Wires in Frictional Wear
,”
Int. J. Mech. Sci.
,
156
(
66
), pp.
170
181
.
11.
Chen
,
Y.
,
Tan
,
H.
, and
Qin
,
W.
,
2020
, “
Semi-Analytical Analysis of the Interwire Multi-State Contact Behavior of a Three-Layered Wire Rope Strand
,”
Int. J. Solids Struct.
,
202
, pp.
136
152
.
12.
Pal
,
U.
,
Mukhopadhyay
,
G.
,
Sharma
,
A.
, and
Bhattacharya
,
S.
,
2018
, “
Failure Analysis of Wire Rope of Ladle Crane in Steel Making Shop
,”
Int. J. Fatigue
,
116
, pp.
149
155
.
13.
Guerra-Fuentes
,
L.
,
Torres-López
,
M.
,
Hernandez-Rodriguez
,
M. A. L.
, and
Garcia-Sanchez
,
E.
,
2020
, “
Failure Analysis of Steel Wire Rope Used in Overhead Crane System
,”
Eng. Failure Anal.
,
118
, pp.
1
8
.
14.
Kumar
,
K.
,
Goyal
,
D.
, and
Banwait
,
S. S.
,
2020
, “
Effect of Key Parameters on Fretting Behaviour of Wire Rope: A Review
,”
Arch. Comput. Methods Eng.
,
27
(
2
), pp.
549
561
.
15.
Zhang
,
D.
,
Yang
,
X.
,
Chen
,
K.
, and
Zhang
,
Z.
,
2018
, “
Fretting Fatigue Behavior of Steel Wires Contact Interface Under Different Crossing Angles
,”
Wear
,
400–401
, pp.
52
61
.
16.
Xu
,
C. M.
,
Peng
,
Y. X.
,
Zhu
,
Z. C.
,
Lu
,
H.
,
Chen
,
G. A.
,
Wang
,
D. G.
,
Peng
,
X.
, and
Wang
,
S. J.
,
2019
, “
Fretting Friction and Wear of Steel Wires in Tension-Torsion and Helical Contact Form
,”
Wear
,
432–433
, pp.
1
16
.
17.
Wang
,
D.
,
Zhang
,
D.
, and
Ge
,
S.
,
2012
, “
Effect of Displacement Amplitude on Fretting Fatigue Behavior of Hoisting Rope Wires in Low Cycle Fatigue
,”
Tribol. Int.
,
52
, pp.
178
189
.
18.
Wang
,
D.
,
Li
,
X.
,
Wang
,
X.
,
Zhang
,
D.
, and
Wang
,
D.
,
2016
, “
Dynamic Wear Evolution and Crack Propagation Behaviors of Steel Wires During Fretting-Fatigue
,”
Tribol. Int.
,
101
, pp.
348
355
.
19.
Wang
,
D.
,
Song
,
D.
,
Wang
,
X.
,
Zhang
,
D.
,
Zhang
,
C.
,
Wang
,
D.
, and
Araújo
,
J. A.
,
2019
, “
Tribo-Fatigue Behaviors of Steel Wires Under Coupled Tension-Torsion in Different Environmental Media
,”
Wear
,
420–421
, pp.
38
53
.
20.
Zhang
,
J.
,
Wang
,
D.
,
Song
,
D.
,
Zhang
,
D.
,
Zhang
,
C.
,
Wang
,
D.
, and
Araújo
,
J. A.
,
2019
, “
Tribo-Fatigue Behaviors of Steel Wire Rope Under Bending Fatigue With the Variable Tension
,”
Wear
,
428–429
, pp.
154
161
.
21.
Guo
,
T.
,
Liu
,
Z.
,
Correia
,
J.
, and
de Jesus
,
A. M. P.
,
2020
, “
Experimental Study on Fretting-Fatigue of Bridge Cable Wires
,”
Int. J. Fatigue
,
131
, pp.
1
9
.
22.
Cao
,
X.
, and
Wu
,
W.
,
2018
, “
The Establishment of a Mechanics Model of Multi-Strand Wire Rope Subjected to Bending Load With Finite Element Simulation and Experimental Verification
,”
Int. J. Mech. Sci.
,
142–143
, pp.
289
303
.
23.
Xiang
,
L.
,
Wang
,
H. Y.
,
Chen
,
Y.
,
Guan
,
Y. J.
, and
Dai
,
L. H.
,
2017
, “
Elastic-Plastic Modeling of Metallic Strands and Wire Ropes Under Axial Tension and Torsion Loads
,”
Int. J. Solids Struct.
,
129
, pp.
103
118
.
24.
Wahid
,
A.
,
Mouhib
,
N.
,
Ouardi
,
A.
,
Sabah
,
F.
,
Chakir
,
H.
, and
ELghorba
,
M.
,
2019
, “
Experimental Prediction of Wire Rope Damage by Energy Method
,”
Eng. Struct.
,
201
, pp.
1
7
.
25.
Xiang-dong
,
C.
,
Yu-xing
,
P.
,
Zhen-cai
,
Z.
,
Sheng-yong
,
Z.
,
Xian-sheng
,
G.
, and
Chun-ming
,
X.
,
2019
, “
Effect of Wear Scar Characteristics on the Bearing Capacity and Fracture Failure Behavior of Winding Hoist Wire Rope
,”
Tribol. Int.
,
130
, pp.
270
283
.
26.
Jikal
,
A.
,
Majid
,
F.
,
Chaffoui
,
H.
,
Meziane
,
M.
, and
ELghorba
,
M.
,
2020
, “
Corrosion Influence on Lifetime Prediction to Determine the Wöhler Curves of Outer Layer Strand of a Steel Wire Rope
,”
Eng. Fail. Anal.
,
109
, pp.
1
12
.
27.
Mouhib
,
N.
,
Wahid
,
A.
,
Sabah
,
F.
,
Chakir
,
H.
, and
ELghorba
,
M.
,
2021
, “
Experimental Characterization and Damage Reliability Analysis of Central Core Strand Extracted From Steel Wire Rope
,”
Eng. Fail. Anal.
,
120
, pp.
1
10
.
28.
Li
,
R.
,
Miao
,
C.
, and
Yu
,
J.
,
2020
, “
Effect of Characteristic Parameters of Pitting on Strength and Stress Concentration Factor of Cable Steel Wire
,”
Constr. Build. Mater.
,
240
, pp.
1
13
.
29.
Zhao
,
D.
,
Gao
,
C.
,
Zhou
,
Z.
,
Liu
,
S.
,
Chen
,
B.
, and
Gao
,
J.
,
2020
, “
Fatigue Life Prediction of the Wire Rope Based on Grey Theory Under Small Sample Condition
,”
Eng. Fail. Anal.
,
107
, pp.
1
14
.
30.
Zhao
,
D.
,
Liu
,
S.
,
Xu
,
Q.
,
Shi
,
F.
,
Sun
,
W.
, and
Chai
,
L.
,
2017
, “
Fatigue Life Prediction of Wire Rope Based on Stress Field Intensity Method
,”
Eng. Fail. Anal.
,
81
, pp.
1
9
.
31.
Cui
,
C.
,
Chen
,
A.
, and
Ma
,
R.
,
2020
, “
An Improved Continuum Damage Mechanics Model for Evaluating Corrosion–Fatigue Life of High-Strength Steel Wires in the Real Service Environment
,”
Int. J. Fatigue
,
135
, pp.
1
9
.
32.
Battini
,
D.
,
Solazzi
,
L.
,
Lezzi
,
A. M.
,
Clerici
,
F.
, and
Donzella
,
G.
,
2020
, “
Prediction of Steel Wire Rope Fatigue Life Based on Thermal Measurements
,”
Int. J. Mech. Sci.
,
182
, pp.
1
13
.
33.
Liu
,
S.
,
Sun
,
Y.
,
Jiang
,
X.
, and
Kang
,
Y.
,
2020
, “
A Review of Wire Rope Detection Methods, Sensors and Signal Processing Techniques
,”
J. Nondestruct. Eval.
,
39
(
4
), pp.
1
18
.
34.
Zhou
,
P.
,
Zhou
,
G.
,
Zhu
,
Z.
,
He
,
Z.
,
Ding
,
X.
, and
Tang
,
C.
,
2019
, “
A Review of Non-Destructive Damage Detection Methods for Steel Wire Ropes
,”
Appl. Sci.
,
9
(
3
), pp.
1
16
.
35.
Liu
,
S.
,
Sun
,
Y.
,
Jiang
,
X.
, and
Kang
,
Y.
,
2021
, “
Comparison and Analysis of Multiple Signal Processing Methods in Steel Wire Rope Defect Detection by Hall Sensor
,”
Meas.: J. Int. Meas. Confed.
,
171
, pp.
1
20
.
36.
Zhang
,
D.
,
Zhang
,
E.
, and
Pan
,
S.
,
2020
, “
A New Signal Processing Method for the Nondestructive Testing of a Steel Wire Rope Using a Small Device
,”
NDT&E Int.
,
114
, pp.
1
13
.
37.
Zhang
,
D.
,
Zhang
,
E.
, and
Yan
,
X.
,
2021
, “
Quantitative Method for Detecting Internal and Surface Defects in Wire Rope
,”
NDT&E Int.
,
119
, pp.
1
16
.
38.
Yan
,
X.
,
Zhang
,
D.
,
Pan
,
S.
,
Zhang
,
E.
, and
Gao
,
W.
,
2017
, “
Online Nondestructive Testing for Fine Steel Wire Rope in Electromagnetic Interference Environment
,”
NDT&E Int.
,
92
, pp.
75
81
.
39.
Neslušan
,
M.
,
Bahleda
,
F.
,
Minárik
,
P.
,
Zgútová
,
K.
, and
Jambor
,
M.
,
2019
, “
Non-Destructive Monitoring of Corrosion Extent in Steel Rope Wires via Barkhausen Noise Emission
,”
J. Magn. Magn. Mater.
,
484
, pp.
179
187
.
40.
Zhou
,
P.
,
Zhou
,
G.
,
He
,
Z.
,
Tang
,
C.
,
Zhu
,
Z.
, and
Li
,
W.
,
2019
, “
A Novel Texture-Based Damage Detection Method for Wire Ropes
,”
Meas.: J. Int. Meas. Confed.
,
148
, pp.
1
14
.
41.
Zheng
,
P.
, and
Zhang
,
J.
,
2019
, “
Quantitative Nondestructive Testing of Wire Rope Based on Pseudo-Color Image Enhancement Technology
,”
Nondestr. Test. Eval.
,
34
(
3
), pp.
221
242
.
42.
Lu
,
S.
, and
Zhang
,
J.
,
2019
, “
Quantitative Nondestructive Testing of Wire Ropes Based on Features Fusion of Magnetic Image and Infrared Image
,”
Shock Vib.
,
2019
, pp.
1
15
.
43.
Chang
,
X. D.
,
Peng
,
Y. X.
,
Zhu
,
Z. C.
,
Zou
,
S. Y.
,
Gong
,
X. S.
, and
Xu
,
C. M.
,
2018
, “
Evolution Properties of Tribological Parameters for Steel Wire Rope Under Sliding Contact Conditions
,”
Metals
,
8
, pp.
1
16
.
44.
Peng
,
Y. X.
,
Chang
,
X. D.
,
Zhu
,
Z. C.
,
Wang
,
D. G.
, and
Gong
,
X. S.
,
2016
, “
Sliding Friction and Wear Behavior of Winding Hoisting Rope in Ultra-Deep Coal Mine Under Different Conditions
,”
Wear
,
368–369
, pp.
423
434
.
45.
Mccoll
,
I. R.
,
Ding
,
J.
, and
Leen
,
S. B.
,
2004
, “
Finite Element Simulation and Experimental Validation of Fretting Wear
,”
Wear
,
256
(
11
), pp.
1114
1127
.
You do not currently have access to this content.