Abstract

Studies show that active control technology can improve system performance and meet the increasing industrial demand in diverse applications. In the present study, the dynamic characteristics of the bearing spindle system based on active piezoelectric restrictors, including the amplitude frequency and phase-frequency characteristics, are analyzed theoretically and experimentally. In the analysis, the influence of the pipeline model on the system characteristics is studied. Then, the feasibility and effectiveness of the active control method are verified through experiments. It is demonstrated that the theoretical and experimental results are consistent. The present study is expected to provide a guideline for further investigations on the structural optimization and control law design for active hydrostatic oil film bearing spindle systems.

References

1.
Sharma
,
S. C.
, and
Yadav
,
S. K.
,
2016
, “
A Comparative Study of Full and Partial Textured Hybrid Orifice Compensated Circular Thrust Pad Bearing System
,”
Tribol. Int.
,
95
, pp.
170
180
.
2.
Lai
,
T.-H.
, and
Lin
,
S.-C.
,
2018
, “
A Simulation Study for the Design of Membrane Restrictor in an Opposed-Pad Hydrostatic Bearing to Achieve High Static Stiffness
,”
Lubricants
,
6
(
3
), p.
71
.
3.
Kang
,
Y.
,
Chen
,
C.-H.
,
Chen
,
Y.-C.
,
Chang
,
C.
, and
Hsiao
,
S.-T.
,
2012
, “
Parameter Identification for Single-Action Membrane-Type Restrictors of Hydrostatic Bearings
,”
Ind. Lubr. Tribol.
,
64
(
1
), pp.
39
53
.
4.
Lin
,
J.-R.
,
2000
, “
Surface Roughness Effect on the Dynamic Stiffness and Damping Characteristics of Compensated Hydrostatic Thrust Bearings
,”
Int. J. Mach. Tools Manuf.
,
40
(
11
), pp.
1671
1689
.
5.
Gohara
,
M.
,
Somaya
,
K.
,
Miyatake
,
M.
, and
Yoshimoto
,
S.
,
2014
, “
Static Characteristics of a Water-Lubricated Hydrostatic Thrust Bearing Using a Membrane Restrictor
,”
Tribol. Int.
,
75
, pp.
111
116
.
6.
Santos
,
I. F.
, and
Gupta
,
K.
,
2011
,
IUTAM Symposium on Emerging Trends in Rotor Dynamics
,
Springer Netherlands
,
Dordrecht
, pp.
185
199
.
7.
Mohsin
,
M.
,
1963
,
Advances in Machine Tool Design and Research
, Vol.
3
,
Pergamon Oxford
,
Manchester, UK
, pp.
429
442
.
8.
Łukasz Breńkacz
,
Ł. W.
,
Drosińska-Komor
,
M.
, and
Szewczuk-Krypa
,
N.
,
2021
, “
Research and Applications of Active Bearings: A State-of-the-Art Review
,”
Mech. Syst. Signal Process.
,
151
, p.
107423
.
9.
Siva Srinivas
,
R.
,
Tiwari
,
R.
, and
Kannababu
,
C.
,
2018
, “
Application of Active Magnetic Bearings in Flexible Rotordynamic Systems—A State-of-the-Art Review
,”
Mech. Syst. Signal Process.
,
106
, pp.
537
572
.
10.
Sawicki
,
J. T.
,
Maslen
,
E. H.
, and
Bischof
,
K. R.
,
2007
, “
Modeling and Performance Evaluation of Machining Spindle With Active Magnetic Bearings
,”
J. Mech. Sci. Technol.
,
21
(
6
), pp.
847
850
.
11.
Bently
,
D. E.
,
Grant
,
J. W.
, and
Hanifan
,
P. C.
,
2000
, “
Active Controlled Hydrostatic Bearings for a New Generation of Machines
,”
ASME Turbo Expo 2000: Power for Land, Sea, and Air
,
Munich, Germany
,
May 8–11
, p. V002T03A011.
12.
Horikawa
,
O.
,
Sato
,
K.
, and
Shimokohbe
,
A.
,
1992
, “
An Active Air Journal Bearing
,”
Nanotechnology
,
3
(
2
), pp.
84
90
.
13.
Mizumoto
,
H.
,
Arii
,
S.
,
Kami
,
Y.
,
Goto
,
K.
,
Yamamoto
,
T.
, and
Kawamoto
,
M.
,
1996
, “
Active Inherent Restrictor for Air-Bearing Spindles
,”
Precis. Eng.
,
19
(
2
), pp.
141
147
.
14.
Al-Bender
,
F.
, and
Van Brussel
,
H.
,
1997
, “
Active Aerostatic Bearing Through Control of Film Geometry
,”
Proceedings of the 9th IPES/UME 4. International Conference
,
Braunschweig, Germany
,
May 27–Aug. 30
, pp.
389
392
.
15.
Al-Bender
,
F.
,
2009
, “
On the Modelling of the Dynamic Characteristics of Aerostatic Bearing Films: From Stability Analysis to Active Compensation
,”
Precis. Eng.
,
33
(
2
), pp.
117
126
.
16.
Lee
,
S.-Q.
, and
Gweon
,
D.-G.
,
2000
, “
A New 3-dof Z-Tilts Micropositioning System Using Electromagnetic Actuators and Air Bearings
,”
Precis. Eng.
,
24
(
1
), pp.
24
31
.
17.
Morosi
,
S.
, and
Santos
,
I. F.
,
2011
, “
Active Lubrication Applied to Radial Gas Journal Bearings. Part 1: Modeling
,”
Tribol. Int.
,
44
(
12
), pp.
1949
1958
.
18.
Pierart
,
F. G.
, and
Santos
,
I. F.
,
2016
, “
Active Lubrication Applied to Radial Gas Journal Bearings. Part 2: Modelling Improvement and Experimental Validation
,”
Tribol. Int.
,
96
, pp.
237
246
.
19.
Salazar
,
J. G.
, and
Santos
,
I. F.
,
2017
, “
Active Tilting-Pad Journal Bearings Supporting Flexible Rotors: Part I—The Hybrid Lubrication
,”
Tribol. Int.
,
107
, pp.
94
105
.
20.
Salazar
,
J. G.
, and
Santos
,
I. F.
,
2017
, “
Active Tilting-Pad Journal Bearings Supporting Flexible Rotors: Part II—The Model-Based Feedback-Controlled Lubrication
,”
Tribol. Int.
,
107
, pp.
106
115
.
21.
Santos
,
I. F.
, and
Watanabe
,
F. Y.
,
2004
, “
Compensation of Cross-Coupling Stiffness and Increase of Direct Damping in Multirecess Journal Bearings Using Active Hybrid Lubrication: Part I—Theory
,”
ASME J. Tribol.
,
126
(
1
), pp.
146
155
.
22.
Liu
,
X.
,
2008
, “Study on the Active Control of Hybrid Bearing Spindle Locus,” PhD thesis,
Shandong University
,
Jinan
.
23.
Liu
,
Z.
,
Pan
,
W.
,
Lu
,
C.
, and
Zhang
,
Y.
,
2016
, “
Numerical Analysis on the Static Performance of a New Piezoelectric Membrane Restrictor
,”
Ind. Lubr. Tribol.
,
68
(
5
), pp.
521
529
.
24.
Li
,
H.
,
2017
, “Research on the Center Orbit of Hydrostatic Spindle Based on Active Membrane Restrictors,” Master’s thesis,
Shandong University
,
Jinan
.
25.
Liu
,
Z.
,
Pan
,
W.
,
Lu
,
C.
, and
Zhang
,
Y.
,
2016
, “
Theory Research and Simulation of Hydrostatic Spindle Axis Trajectory Based on the Piezoelectric Thin Film Differential Throttling Valve
,”
J. Mech. Eng.
,
52
(
21
), pp.
71
77
.
26.
Liang
,
P.
,
Lu
,
C.
, and
Yang
,
F.
,
2019
, “
Optimal Control Simulation of Elliptical Shaft Center Orbit With the Hydraulic Servo System
,”
Proc. Inst. Mech. Eng. B
,
233
(
2
), pp.
610
624
.
27.
Liang
,
P.
,
Lu
,
C.
,
Yang
,
F.
, and
Wang
,
L.
,
2016
, “
Open-Loop Control of Elliptical Shaft Center Orbit
,”
Proc. Inst. Mech. Eng. B
,
230
(
10
), pp.
1818
1833
.
28.
Mohsin
,
M. E.
, and
Morsi
,
S. A.
,
1969
, “
The Dynamic Stiffness of Controlled Hydrostatic Bearings
,”
ASME J. Lubr. Technol.
,
91
(
4
), pp.
597
608
.
29.
Merelli
,
C. E.
,
Barilá
,
D. O.
,
Vignolo
,
G. G.
, and
Quinzani
,
L. M.
,
2019
, “
Dynamic Coefficients of Finite Length Journal Bearing. Evaluation Using a Regular Perturbation Method
,”
Int. J. Mech. Sci.
,
151
, pp.
251
262
.
30.
Bastani
,
Y.
, and
de Queiroz
,
M.
,
2009
, “
A New Analytic Approximation for the Hydrodynamic Forces in Finite-Length Journal Bearings
,”
J. Tribol.
,
132
(
1
), p.
014502
.
31.
Dyk
,
S.
,
Rendl
,
J.
,
Byrtus
,
M.
, and
Smolík
,
L.
,
2019
, “
Dynamic Coefficients and Stability Analysis of Finite-Length Journal Bearings Considering Approximate Analytical Solutions of the Reynolds Equation
,”
Tribol. Int.
,
130
, pp.
229
244
.
32.
Yang
,
X.-G.
,
Wang
,
Y.-Q.
,
Jiang
,
G.-Y.
,
Yan
,
X.-C.
, and
Luo
,
Y.-X.
,
2015
, “
Dynamic Characteristics of Hydrostatic Active Journal Bearing of Four Oil Recesses
,”
Tribol. Trans.
,
58
(
1
), pp.
7
17
.
33.
Fedorynenko
,
D.
,
Kirigaya
,
R.
, and
Nakao
,
Y.
,
2020
, “
Dynamic Characteristics of Spindle With Water-Lubricated Hydrostatic Bearings for Ultra-Precision Machine Tools
,”
Precis. Eng.
,
63
, pp.
187
196
.
34.
Taylor
,
C. J.
,
Washington
,
G. N.
, and
Davis
,
L. P.
,
2002
,
Smart Structures and Materials 2002: Smart Structures and Integrated Systems
, Vol.
4701
,
SPIE
,
San Diego, CA
, pp.
443
454
.
35.
Goodson
,
R. E.
, and
Leonard
,
R. G.
,
1972
, “
A Survey of Modeling Techniques for Fluid Line Transients
,”
ASME J. Basic Eng.
,
94
(
2
), pp.
474
482
.
36.
Nursilo
,
W. S.
,
2000
, “Fluid Transmission Line Dynamics,” Ph.D. thesis,
The University of Texas at Arlington
,
Arlington, TX
.
You do not currently have access to this content.