Abstract

Due to the repeated iteration, the numerical method represented by the finite-difference method has the disadvantages of low computational efficiency and long time-consuming in solving the Reynolds equation. This paper proposed a new sparse matrix-based method to solve the difference Reynolds equation by replacing the pressure iterative process with the sparse matrix solver. Compared with the traditional iterative methods, this new method's computational efficiency is about two orders of magnitude higher, and it shows high accuracy in different degrees-of-freedom. Two cases of aerostatic lubrication and elastohydrodynamic lubrication are used to illustrate the effectiveness of this method. This method can support the rapid analysis of fluid lubrication problems and lay the foundation for developing the lubrication calculation library.

References

1.
Pei
,
J.
,
Han
,
X.
,
Tao
,
Y.
, and
Feng
,
S.
,
2020
, “
Mixed Elastohydrodynamic Lubrication Analysis of Line Contact With Non-Gaussian Surface Roughness
,”
Tribol. Int.
,
151
, p.
106449
.
2.
Chetti
,
B.
, and
Zouggar
,
H.
,
2019
, “
Steady-State Performance of a Circular Journal Bearing Lubricated With a Non-Newtonian Fluid Considering the Elastic Deformation of the Liner
,”
Proc. Inst. Mech. Eng. Part J.: J. Eng. Tribol.
,
233
(
9
), pp.
1389
1396
.
3.
Chang
,
S. H.
,
Chan
,
C. W.
, and
Jeng
,
Y. R.
,
2015
, “
Numerical Analysis of Discharge Coefficients in Aerostatic Bearings With Orifice-Type Restrictors
,”
Tribol. Int.
,
90
, pp.
157
163
.
4.
Wang
,
L.
,
Lu
,
C.
,
Wang
,
M.
, and
Fu
,
W.
,
2012
, “
The Numerical Analysis of the Radial Sleeve Bearing With Combined Surface Slip
,”
Tribol. Int.
,
47
, pp.
100
104
.
5.
Lv
,
F.
,
Rao
,
Z.
,
Ta
,
N.
, and
Jiao
,
C.
,
2017
, “
Mixed-Lubrication Analysis of Thin Polymer Film Overplayed Metallic Marine Stern Bearing Considering Wall Slip and Journal Misalignment
,”
Tribol. Int.
,
109
, pp.
390
397
.
6.
Lv
,
F.
,
Jiao
,
C.
,
Ta
,
N.
, and
Rao
,
Z.
,
2018
, “
Mixed-Lubrication Analysis of Misaligned Bearing Considering Turbulence
,”
Tribol. Int.
,
119
, pp.
19
26
.
7.
He
,
T.
,
Zou
,
D.
,
Lu
,
X.
,
Guo
,
Y.
,
Wang
,
Z.
, and
Li
,
W.
,
2014
, “
Mixed-Lubrication Analysis of Marine Stern Tube Bearing Considering Bending Deformation of Stern Shaft and Cavitation
,”
Tribol. Int.
,
73
, pp.
108
116
.
8.
Sun
,
J.
,
Deng
,
M.
,
Fu
,
Y.
, and
Gui
,
C.
,
2010
, “
Thermohydrodynamic Lubrication Analysis of Misaligned Plain Journal Bearing With Rough Surface
,”
ASME J. Tribol.
,
132
(
1
), p.
011704
.
9.
Liu
,
Y.
,
Wang
,
Q.
,
Wang
,
W.
,
Hu
,
Y.
, and
Zhu
,
D.
,
2006
, “
Effects of Differential Scheme and Mesh Density on EHL Film Thickness in Point Contacts
,”
ASME J. Tribol.
,
128
(
3
), pp.
641
653
.
10.
Ren
,
T.
, and
Feng
,
M.
,
2016
, “
Stability Analysis of Water-Lubricated Journal Bearings for Fuel Cell Vehicle Air Compressor
,”
Tribol. Int.
,
95
, pp.
342
348
.
11.
Jao
,
H. C.
,
Chang
,
K. M.
,
Chu
,
L.
, and
Li
,
W.
,
2016
, “
A Modified Average Reynolds Equation for Rough Bearings With Anisotropic Slip
,”
ASME J. Tribol.
,
138
(
1
), p.
011702
.
12.
Chu
,
L.
,
Yu
,
C.
,
Chen
,
Q.
, and
Li
,
W.
,
2015
, “
Elastohydrodynamic Lubrication Analysis of Pure Squeeze Motion on an Elastic Coating/Elastic Substrate System
,”
ASME J. Tribol.
,
137
(
1
), p.
011503
.
13.
Hou
,
Y.
,
Lai
,
T.
,
Chen
,
S.
,
Ma
,
B.
, and
Liu
,
J.
,
2013
, “
Numerical Analysis on the Static Performance of Tilting Pad–Journal Gas Bearing in Subsystems
,”
Tribol. Int.
,
61
, pp.
70
79
.
14.
Sharma
,
S.
,
Jamwal
,
G.
, and
Awasthi
,
R. K.
,
2019
, “
Enhancement of Steady State Performance of Hydrodynamic Journal Bearing Using Chevron-Shaped Surface Texture
,”
Proc. Inst. Mech. Eng. Part J.: J. Eng. Tribol.
,
233
(
12
), pp.
1833
1843
.
15.
Nyemeck
,
A. P.
,
Brunetiere
,
N.
, and
Tournerie
,
B.
,
2015
, “
A Mixed Thermoelastohydrodynamic Lubrication Analysis of Mechanical Face Seals by a Multiscale Approach
,”
Tribol. Trans.
,
58
(
5
), pp.
836
848
.
16.
Meng
,
Y.
,
Xu
,
J.
,
Jin
,
Z.
,
Prakash
,
B.
, and
Hu
,
Y.
,
2020
, “
A Review of Recent Advances in Tribology
,”
Friction
,
8
(
2
), pp.
221
300
.
17.
Zhang
,
H.
,
Wang
,
W.
,
Zhang
,
S.
, and
Zhao
,
Z.
,
2017
, “
Elastohydrodynamic Lubrication Analysis of Finite Line Contact Problem With Consideration of Two Free End Surfaces
,”
ASME J. Tribol.
,
139
(
3
), p.
031501
.
18.
Akbarzadeh
,
P.
,
2015
, “
Numerical Study of Thermohydrodynamic Characteristics of Oil Tilting-Pad Journal Bearings With a Selfpumping Fluid Flow Circulation
,”
Tribol. Trans.
,
58
(
1
), pp.
18
30
.
19.
Wang
,
Y.
,
Wang
,
W.
,
Li
,
Y.
, and
Zhao
,
Z.
,
2018
, “
Lubrication and Thermal Failure Mechanism Analysis in High-Speed Angular Contact Ball Bearing
,”
AMSE J. Tribol.
,
140
(
3
), p.
031503
.
20.
Zhang
,
Y.
,
Wang
,
W.
,
Liang
,
H.
, and
Zhao
,
Z.
,
2019
, “
Layered Oil Slip Model for Investigation of Film Thickness Behaviours at High Speed Conditions
,”
Tribol. Int.
,
131
, pp.
137
147
.
21.
Liu
,
W.
,
Huang
,
Z.
,
Liu
,
Q.
, and
Zeng
,
J.
,
2016
, “
An Isogeometric Analysis Approach for Solving the Reynolds Equation in Lubricated Piston Dynamics
,”
Tribol. Int.
,
103
, pp.
149
166
.
22.
Sun
,
P.
,
Chen
,
W.
,
Shen
,
Y.
, and
Wang
,
D.
,
2020
, “
Calculation Method for Comprehensive Damping of Ball Bearings Based on Multigrid Method
,”
Ind. Lubr. Tribol.
,
72
(
7
), pp.
937
945
.
23.
Wang
,
N.
,
Chang
,
S.
, and
Huang
,
H.
,
2011
, “
Comparison of Iterative Methods for the Solution of Compressible-Fluid Reynolds Equation
,”
ASME J. Tribol.
,
133
(
2
), p.
021702
.
24.
Boubendir
,
S.
,
Larbi
,
S.
,
Malki
,
M.
, and
Bennacer
,
R.
,
2019
, “
Hydrodynamic Self-Lubricating Journal Bearings Analysis Using Rabinowitsch Fluid Lubricant
,”
Tribol. Int.
,
140
, p.
105856
.
25.
Wang
,
X.
,
Xu
,
Q.
,
Wang
,
B.
,
Zhang
,
L.
,
Yang
,
H.
, and
Peng
,
Z.
,
2017
, “
Numerical Calculation of Rotation Effects on Hybrid Air Journal Bearings
,”
Tribol. Trans.
,
60
(
2
), pp.
195
207
.
26.
Huang
,
P.
,
2012
,
Lubrication Numerical Calculation Methods
,
Higher Education Press
,
Beijing
, pp.
53
57
. (in Chinese)
27.
Benariba
,
A.
,
Bouzidane
,
A.
,
Thomas
,
M.
, and
Guilbault
,
R.
,
2018
, “
Numerical Analysis of a Rigid Rotor Mounted on Four-Pad Hydrostatic Squeeze Film Damper Lubricated With Micropolar Lubricant
,”
Proc. Inst. Mech. Eng. Part J.: J. Eng. Tribol.
,
232
(
5
), pp.
513
524
.
28.
Shao
,
K.
,
Liu
,
C.
,
Bi
,
F.
,
Lu
,
D.
, and
Zhang
,
J.
,
2015
, “
Analysis of Hydrodynamic Loads on Performance Characteristics of Engine Main Bearings
,”
Proc. Inst. Mech. Eng. Part J.: J. Eng. Tribol.
,
229
(
6
), pp.
667
676
.
29.
Hong
,
S.
, and
Kim
,
K.
,
2016
, “
The Validity of the Reynolds Equation in Spool Valve Analysis Considering Cavitation
,”
Friction
,
4
(
3
), pp.
266
276
.
30.
Zhang
,
S.
,
Zhang
,
C.
,
Hu
,
Y.
, and
Ma
,
L.
,
2019
, “
Numerical Simulation of Mixed Lubrication Consider Surface Forces
,”
Tribol. Int.
,
140
, p.
105878
.
31.
He
,
T.
,
Zhu
,
D.
,
Yu
,
C.
, and
Wang
,
Q.
,
2019
, “
Mixed Elastohydrodynamic Lubrication Model for Finite Roller-Coated Half Space Interfaces
,”
Tribol. Int.
,
134
, pp.
178
189
.
32.
Belforte
,
G.
,
Raparelli
,
T.
,
Viktorov
,
V.
, and
Trivella
,
A.
,
2007
, “
Discharge Coefficients of Orifice-Type Restrictor for Aerostatic Bearings
,”
Tribol. Int.
,
40
(
3
), pp.
512
521
.
33.
Chevalier
,
F.
,
Lubrecht
,
A. A.
,
Cann
,
P. M.
,
Colin
,
F.
, and
Dalmaz
,
G.
,
1998
, “
Film Thickness in Starved EHL Point Contacts
,”
ASME J. Tribol.
,
120
(
1
), pp.
126
133
.
34.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
,
2000
, “
Multigrid Techniques: A Fast and Efficient Method for the Numerical Simulation of Elastohydrodynamically Lubricated Point Contact Problems
,”
Proc. Inst. Mech. Eng. Part J.: J. Eng. Tribol.
,
214
(
J1
), pp.
43
62
.
You do not currently have access to this content.