Abstract

Major cooling and lubricating properties such as conduction, convection, and lubricant stability at higher temperatures are improvised by the addition of nanoparticle into metal cutting fluids. The present investigation is mainly focused on the effects of pure coconut oil (PC)-based nanofluids through minimum quantity lubrication (MQL) on oblique cutting performance of Al-7079/7 wt%-TiC in situ reinforced metal matrix composites (MMCs). The machining performance has been evaluated under dry machining, pure coconut oil (PC)-MQL, and MQL by varying 0.1% to 0.6 vol% nanoparticles into PC. The performance of nano cutting fluids was compared to dry machining and PC machining in terms of cutting forces, tool wear, cutting zone temperature, and surface roughness. It was found that, compared to dry and PC-MQL machining, the performance of nano MQL machining was superior among all cutting conditions. However, above 0.4% nano particles, the nano MQL performance was degraded drastically, which leads to the substantial increment in cutting forces, tool wear, surface roughness, and cutting zone temperature.

References

1.
Sivaprasad
,
K.
,
Babu
,
S. P. K.
,
Natarajan
,
S.
,
Narayanasamy
,
R.
,
Kumar
,
B. A.
, and
Dinesh
,
G.
,
2008
, “
Study on Abrasive and Erosive Wear Behaviour of Al 6063/TiB2 in Situ Composites
,”
Mater. Sci. Eng. A
,
498
(
1–2
), pp.
495
500
.
2.
Popov
,
V. A.
,
Shelekhov
,
E. V.
,
Prosviryakov
,
A. S.
,
Presniakov
,
M. Y.
,
Senatulin
,
B. R.
,
Kotov
,
A. D.
, and
Khomutov
,
M. G.
,
2017
, “
Particulate Metal Matrix Composites Development on the Basis of in Situ Synthesis of TiC Reinforcing Nanoparticles During Mechanical Alloying
,”
J. Alloys Compd.
,
707
(
6
), pp.
365
370
.
3.
Suthar
,
J.
, and
Patel
,
K. M.
,
2018
, “
Processing Issues, Machining, and Applications of Aluminum Metal Matrix Composites
,”
Mater. Manuf. Process.
,
33
(
5
), pp.
499
527
.
4.
Erhan
,
S. Z.
,
Sharma
,
B. K.
, and
Perez
,
J. M.
,
2006
, “
Oxidation and Low Temperature Stability of Vegetable Oil-Based Lubricants
,”
Ind. Crops Prod.
,
24
(
3
), pp.
292
299
.
5.
Singh
,
T.
,
Dureja
,
J. S.
,
Dogra
,
M.
, and
Bhatti
,
M. S.
,
2018
, “
Environment Friendly Machining of Inconel 625 Under Nano-Fluid Minimum Quantity Lubrication (NMQL)
,”
Int. J. Precis. Eng. Manuf.
,
19
(
11
), pp.
1689
1697
.
6.
Rapeti
,
P.
,
Krishna
,
V.
,
Mohana
,
K.
, and
Gurram
,
R.
,
2018
, “
Performance Evaluation of Vegetable Oil Based Nano Cutting Fluids in Machining Using Grey Relational Analysis—A Step Towards Sustainable Manufacturing
,”
J. Cleaner Prod.
,
172
(
1
), pp.
2862
2875
.
7.
Boswell
,
B.
,
Islam
,
M. N.
,
Davies
,
I. J.
,
Ginting
,
Y. R.
, and
Ong
,
A. K.
,
2017
, “
A Review Identifying the Effectiveness of Minimum Quantity Lubrication (MQL) During Conventional Machining
,”
Int. J. Adv. Manuf. Technol.
,
92
(
1
), pp.
321
340
.
8.
Behera
,
B. C.
,
Chetan
,
Setti
,
D.
,
Ghosh
,
S.
, and
Rao
,
P. V.
,
2017
, “
Spreadability Studies of Metal Working Fluids on Tool Surface and Its Impact on Minimum Amount Cooling and Lubrication Turning
,”
J. Mater. Process. Technol.
,
244
(
6
), pp.
1
16
.
9.
Barnes
,
S.
,
Pashby
,
I. R.
, and
Mok
,
D. K.
,
1996
, “
The Effect of Workpiece Temperature on the Machinability of an Aluminum/Sic MMC
,”
ASME J. Manuf. Sci. Eng.
,
118
(
3
), pp.
422
427
.
10.
Gajrani
,
K. K.
,
Suvin
,
P. S.
,
Kailas
,
S. V.
, and
Mamilla
,
R. S.
,
2019
, “
Thermal, Rheological, Wettability and Hard Machining Performance of MoS2 and CaF2 Based Minimum Quantity Hybrid Nano-Green Cutting Fluids
,”
J. Mater. Process. Technol.
,
266
(
4
), pp.
125
139
.
11.
Pugazhenthi
,
A.
,
Kanagaraj
,
G.
,
Dinaharan
,
I.
, and
David Raja Selvam
,
J.
,
2018
, “
Turning Characteristics of In Situ Formed TiB2 Ceramic Particulate Reinforced AA7075 Aluminum Matrix Composites Using Polycrystalline Diamond Cutting Tool
,”
Meas. J. Int. Meas. Confed.
,
121
(
6
), pp.
39
46
.
12.
Talib
,
N.
,
Nasir
,
R. M.
, and
Rahim
,
E. A.
,
2017
, “
Tribological Behaviour of Modified Jatropha Oil by Mixing Hexagonal Boron Nitride Nanoparticles as a Bio-Based Lubricant for Machining Processes
,”
J. Cleaner Prod.
,
147
(
3
), pp.
360
378
.
13.
Revuru
,
R. S.
,
Pasam
,
V. K.
,
Syed
,
I.
, and
Paliwal
,
U. K.
,
2018
, “
Development of Finite Element Based Model for Performance Evaluation of Nano Cutting Fluids in Minimum Quantity Lubrication
,”
CIRP J. Manuf. Sci. Technol.
,
21
(
5
), pp.
75
85
.
14.
Kannan
,
C.
,
Ramanujam
,
R.
, and
Balan
,
A. S. S.
,
2018
, “
Machinability Studies on Al 7075/BN/Al2O3 Squeeze Cast Hybrid Nanocomposite Under Different Machining Environments
,”
Mater. Manuf. Process.
,
33
(
5
), pp.
587
595
.
15.
Sujith
,
S. V.
,
Mahapatra
,
M. M.
, and
Mulik
,
R. S.
,
2019
, “
An Investigation Into Fabrication and Characterization of Direct Reaction Synthesized Al-7079-TiC In Situ Metal Matrix Composites
,”
Arch. Civ. Mech. Eng.
,
19
(
1
), pp.
63
78
.
16.
Sujith
,
S. V.
, and
Mulik
,
R. S.
,
2020
, “
Thermal History Analysis and Structure-Property Validation of Friction Stir Welded Al-7079-TiC In-Situ Metal Matrix Composites
,”
J. Alloys Compd.
,
812
(
1
), p.
152131
.
17.
Ali
,
A.
,
Nabi
,
F.
,
Malik
,
N. A.
,
Tasneem
,
S.
, and
Uzair
,
S.
,
2014
, “
Study of Micellization of Sodium Dodecyl Sulfate in Non-Aqueous Media Containing Lauric Acid and Dimethylsulfoxide
,”
J. Surfactants Deterg.
,
17
(
1
), pp.
151
160
.
18.
Kalteh
,
M.
,
Abbassi
,
A.
,
Saffar-Avval
,
M.
,
Frijns
,
A.
,
Darhuber
,
A.
, and
Harting
,
J.
,
2012
, “
Experimental and Numerical Investigation of Nanofluid Forced Convection Inside a Wide Microchannel Heat Sink
,”
Appl. Therm. Eng.
,
36
(
1
), pp.
260
268
.
19.
Machacon
,
H. T. C.
,
Shiga
,
S.
,
Karasawa
,
T.
, and
Nakamura
,
H.
,
2001
, “
Performance and Emission Characteristics of a Diesel Engine Fueled With Coconut Oil–Diesel Fuel Blend
,”
Biomass Bioenergy
,
20
(
1
), pp.
63
69
.
20.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.
21.
Zhou
,
S. Q.
, and
Ni
,
R.
,
2008
, “
Measurement of the Specific Heat Capacity of Water-Based Al2O3 Nanofluid
,”
Appl. Phys. Lett.
,
92
(
9
), pp.
1
4
.
22.
Li
,
G.
,
Yi
,
S.
,
Li
,
N.
,
Pan
,
W.
,
Wen
,
C.
, and
Ding
,
S.
,
2019
, “
Quantitative Analysis of Cooling and Lubricating Effects of Graphene Oxide Nanofluids in Machining Titanium Alloy Ti6Al4V
,”
J. Mater. Process. Technol.
,
271
(
9
), pp.
584
598
.
23.
Bartarya
,
G.
, and
Choudhury
,
S. K.
,
2012
, “
State of the Art in Hard Turning
,”
Int. J. Mach. Tools Manuf.
,
53
(
1
), pp.
1
14
.
24.
Gupta
,
M. K.
,
Sood
,
P. K.
, and
Sharma
,
V. S.
,
2016
, “
Optimization of Machining Parameters and Cutting Fluids During Nano-Fluid Based Minimum Quantity Lubrication Turning of Titanium Alloy by Using Evolutionary Techniques
,”
J. Cleaner Prod.
,
135
(
11
), pp.
1276
1288
.
25.
Chetan
,
Behera
,
B. C.
,
Ghosh
,
S.
, and
Rao
,
P. V.
,
2016
, “
Application of Nanofluids During Minimum Quantity Lubrication: A Case Study in Turning Process
,”
Tribol. Int.
,
101
(
9
), pp.
234
246
.
26.
Sharma
,
A. K.
,
Tiwari
,
A. K.
,
Dixit
,
A. R.
,
Singh
,
R. K.
, and
Singh
,
M.
,
2018
, “
Novel Uses of Alumina/Graphene Hybrid Nanoparticle Additives for Improved Tribological Properties of Lubricant in Turning Operation
,”
Tribol. Int.
,
119
(
3
), pp.
99
111
.
27.
Liu
,
C.
,
Gao
,
L.
,
Jiang
,
X.
,
Xu
,
W.
,
Liu
,
S.
, and
Yang
,
T.
,
2020
, “
International Journal of Mechanical Sciences Analytical Modeling of Subsurface Damage Depth in Machining of SiC p/Al Composites
,”
Int. J. Mech. Sci.
,
185
(
11
), pp.
105874
.
28.
Devillez
,
A.
,
Le Coz
,
G.
,
Dominiak
,
S.
, and
Dudzinski
,
D.
,
2011
, “
Dry Machining of Inconel 718, Workpiece Surface Integrity
,”
J. Mater. Process. Technol.
,
211
(
10
), pp.
1590
1598
.
29.
Bagherzadeh
,
A.
, and
Budak
,
E.
,
2018
, “
Investigation of Machinability in Turning of Difficult-to-Cut Materials Using a New Cryogenic Cooling Approach
,”
Tribol. Int.
,
119
(
3
), pp.
510
520
.
30.
Najiha
,
M. S.
,
Rahman
,
M. M.
, and
Kadirgama
,
K.
,
2016
, “
Performance of Water-Based TiO2 Nanofluid During the Minimum Quantity Lubrication Machining of Aluminium Alloy, AA6061-T6
,”
J. Cleaner Prod.
,
135
(
11
), pp.
1623
1636
.
31.
Asadi
,
A.
,
Asadi
,
M.
,
Rezaniakolaei
,
A.
,
Rosendahl
,
L. A.
,
Afrand
,
M.
, and
Wongwises
,
S.
,
2018
, “
Heat Transfer Efficiency of Al2O3-MWCNT/Thermal Oil Hybrid Nanofluid as a Cooling Fluid in Thermal and Energy Management Applications: An Experimental and Theoretical Investigation
,”
Int. J. Heat Mass Transfer
,
117
(
2
), pp.
474
486
.
32.
Timofeeva
,
E. V.
,
Routbort
,
J. L.
, and
Singh
,
D.
,
2009
, “
Particle Shape Effects on Thermophysical Properties of Alumina Nanofluids
,”
J. Appl. Phys.
,
106
(
1
), pp.
1
10
.
You do not currently have access to this content.