Abstract

In this investigation, a three-dimensional (3D) finite element model (FEM) was developed to study fretting wear of Hertzian circular and line contacts. The wear law incorporated in this model is based on the accumulated dissipated energy (ADE). A stress-based damage mechanics finite element model using the ADE was developed to determine wear of non-conformal bodies in contact. Voronoi tessellation was used to simulate the microstructure of the materials during the fretting process. In order to simulate the wear area in fretting contacts, a material removal approach was developed and implemented in the model. The FEM was used to investigate partial slip regimes under various operating conditions. The normal and shear surface tractions for the circular and line contacts were applied to the domain in order to improve the computational efficiency. The calculated wear volume rate using the FE model is in good agreement with the wear coefficient available in the open literature. The influence of modulus of elasticity, hardness, and coefficient of friction on the partial slip fretting phenomenon were studied. In order to verify the model, several fretting wear tests were conducted using AISI 8620 steel and AISI 1566 steel in a partial slip regime of circular contact configuration. The properties for each material such as the modulus of elasticity, hardness, and the grain size were measured experimentally and compared with the model. For the defined load and displacement amplitude of the experimental fretting tests, both materials have shown a partial slip behavior in the initial cycles and then transition to a gross slip regime. The numerical model predicted the worn surface and wear-rate in partial slip regime which corroborated well with these experimental test results.

References

1.
Ghosh
,
A.
,
Leonard
,
B.
, and
Sadeghi
,
F.
,
2013
, “
A Stress Based Damage Mechanics Model to Simulate Fretting Wear of Hertzian Line Contact in Partial Slip
,”
Wear
,
307
(
1–2
), pp.
87
99
.
2.
Ahmadi
,
A.
,
Sadeghi
,
F.
, and
Shaffer
,
S.
,
2018
, “
In-Situ Friction and Fretting Wear Measurements of Inconel 617 at Elevated Temperatures
,”
Wear
,
410
, pp.
110
118
.
3.
Parikh
,
V. P.
,
Ahmadi
,
A.
,
Parekh
,
M. H.
,
Sadeghi
,
F.
, and
Pol
,
V. G.
,
2019
, “
Upcycling of Spent Lithium Cobalt Oxide Cathodes From Discarded Lithium-Ion Batteries as Solid Lubricant Additive
,”
Environ. Sci. Technol.
,
53
(
7
), pp.
3757
3763
.
4.
Odfalk
,
M.
, and
Vingsbo
,
O.
,
1990
, “
Influence of Normal Force and Frequency in Fretting©
,”
Tribol. Trans.
,
33
(
4
), pp.
604
610
.
5.
Pearson
,
S. R.
,
Shipway
,
P. H.
,
Abere
,
J. O.
, and
Hewitt
,
R. A. A.
,
2013
, “
The Effect of Temperature on Wear and Friction of a High Strength Steel in Fretting
,”
Wear
,
303
(
1
), pp.
622
631
.
6.
Qiu
,
Y.
, and
Roylance
,
B. J.
,
1992
, “
The Effect of Lubricant Additives on Fretting Wear
,”
Lubr. Eng.
,
48
(
10
), pp.
801
808
.
7.
Ahmadi
,
A.
,
Tang
,
J.
,
Pol
,
V. G.
,
Sadeghi
,
F.
, and
Mistry
,
K. K.
,
2019
, “
Binder Mediated Enhanced Surface Adhesion of Cured, Dry Solid Lubricant on Bearing Steel for Significant Friction and Wear Reduction Under High Contact Pressure
,”
Carbon N. Y.
,
146
, pp.
588
596
.
8.
Mindlin
,
R. D.
,
1949
, “
Compliance of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
,
16
(
3
), pp.
259
268
.
9.
Goryacheva
,
I. G.
,
Rajeev
,
P. T.
, and
Farris
,
T. N.
,
2001
, “
Wear in Partial Slip Contact
,”
ASME J. Tribol.
,
123
(
4
), pp.
848
856
.
10.
Hills
,
D. A.
,
Sackfield
,
A.
, and
Paynter
,
R. J. H.
,
2009
, “
Simulation of Fretting Wear in Halfplane Geometries: Part 1—The Solution for Long Term Wear
,”
ASME J. Tribol.
,
131
(
3
), p.
031401
.
11.
Nowell
,
D.
,
2010
, “
Simulation of Fretting Wear in Half-Plane Geometries—Part II: Analysis of the Transient Wear Problem Using Quadratic Programming
,”
ASME J. Tribol.
,
132
(
2
), p.
021402
.
12.
Dhia
,
H. B.
, and
Torkhani
,
M.
,
2011
, “
Modeling and Computation of Fretting Wear of Structures Under Sharp Contact
,”
Int. J. Numer. Methods Eng.
,
85
(
1
), pp.
61
83
.
13.
Johansson
,
L.
,
1994
, “
Numerical Simulation of Contact Pressure Evolution in Fretting
,”
ASME J. Tribol.
,
116
(
2
), pp.
247
254
.
14.
McColl
,
I. R.
,
Ding
,
J.
, and
Leen
,
S. B.
,
2004
, “
Finite Element Simulation and Experimental Validation of Fretting Wear
,”
Wear
,
256
(
11–12
), pp.
1114
1127
.
15.
Paulin
,
C.
,
Fouvry
,
S.
, and
Meunier
,
C.
,
2008
, “
Finite Element Modelling of Fretting Wear Surface Evolution: Application to a Ti–6A1–4V Contact
,”
Wear
,
264
(
1–2
), pp.
26
36
.
16.
Leonard
,
B. D.
,
Sadeghi
,
F.
,
Shinde
,
S.
, and
Mittelbach
,
M.
,
2012
, “
A Numerical and Experimental Investigation of Fretting Wear and a New Procedure for Fretting Wear Maps
,”
Tribol. Trans.
,
55
(
3
), pp.
313
324
.
17.
Cruzado
,
A.
,
Urchegui
,
M. A.
, and
Gómez
,
X.
,
2012
, “
Finite Element Modeling and Experimental Validation of Fretting Wear Scars in Thin Steel Wires
,”
Wear
,
289
, pp.
26
38
.
18.
Rodríguez-Tembleque
,
L.
, and
Aliabadi
,
M. H.
,
2016
, “
Numerical Simulation of Fretting Wear in Fiber-Reinforced Composite Materials
,”
Eng. Fract. Mech.
,
168
, pp.
13
27
.
19.
Dong
,
Q.
,
Zhou
,
K.
,
Chen
,
W. W.
, and
Fan
,
Q.
,
2016
, “
Partial Slip Contact Modeling of Heterogeneous Elasto-plastic Materials
,”
Int. J. Mech. Sci.
,
114
, pp.
98
110
.
20.
Yue
,
T.
, and
Abdel Wahab
,
M.
,
2017
, “
Finite Element Analysis of Fretting Wear Under Variable Coefficient of Friction and Different Contact Regimes
,”
Tribol. Int.
,
107
, pp.
274
282
.
21.
Mohd Tobi
,
A. L.
,
Sun
,
W.
, and
Shipway
,
P. H.
,
2017
, “
Investigation on the Plasticity Accumulation of Ti-6Al-4V Fretting Wear by Decoupling the Effects of Wear and Surface Profile in Finite Element Modelling
,”
Tribol. Int.
,
113
, pp.
448
459
.
22.
Ashton
,
P. J.
,
Harte
,
A. M.
, and
Leen
,
S. B.
,
2018
, “
A Strain-Gradient, Crystal Plasticity Model for Microstructure-Sensitive Fretting Crack Initiation in Ferritic-Pearlitic Steel for Flexible Marine Risers
,”
Int. J. Fatigue
,
111
, pp.
81
92
.
23.
Sharma
,
A.
,
Vijay
,
A.
, and
Sadeghi
,
F.
,
2021
, “
Finite Element Modeling of Fretting Wear in Anisotropic Composite Coatings: Application to HVOF Cr3C2–NiCr Coating
,”
Tribol. Int.
,
155
, p.
106765
.
24.
Bhattacharya
,
B.
, and
Ellingwood
,
B.
,
1998
, “
Continuum Damage Mechanics Analysis of Fatigue Crack Initiation
,”
Int. J. Fatigue
,
20
(
9
), pp.
631
639
.
25.
Ireman
,
P.
,
Klarbring
,
A.
, and
Strömberg
,
N.
,
2003
, “
A Model of Damage Coupled to Wear
,”
Int. J. Solids Struct.
,
40
(
12
), pp.
2957
2974
.
26.
Raje
,
N.
,
Sadeghi
,
F.
, and
Rateick
,
R. G.
,
2008
, “
A Statistical Damage Mechanics Model for Subsurface Initiated Spalling in Rolling Contacts
,”
ASME J. Tribol.
,
130
(
4
), p.
042201
.
27.
Raje
,
N.
,
Slack
,
T.
, and
Sadeghi
,
F.
,
2009
, “
A Discrete Damage Mechanics Model for High Cycle Fatigue in Polycrystalline Materials Subject to Rolling Contact
,”
Int. J. Fatigue
,
31
(
2
), pp.
346
360
.
28.
Warhadpande
,
A.
,
Jalalahmadi
,
B.
,
Slack
,
T.
, and
Sadeghi
,
F.
,
2010
, “
A New Finite Element Fatigue Modeling Approach for Life Scatter in Tensile Steel Specimens
,”
Int. J. Fatigue
,
32
(
4
), pp.
685
697
.
29.
Zhang
,
T.
,
McHugh
,
P. E.
, and
Leen
,
S. B.
,
2012
, “
Finite Element Implementation of Multiaxial Continuum Damage Mechanics for Plain and Fretting Fatigue
,”
Int. J. Fatigue
,
44
, pp.
260
272
.
30.
Leonard
,
B. D.
,
Sadeghi
,
F.
,
Shinde
,
S.
, and
Mittelbach
,
M.
,
2013
, “
Rough Surface and Damage Mechanics Wear Modeling Using the Combined Finite-Discrete Element Method
,”
Wear
,
305
(
1–2
), pp.
312
321
.
31.
Matveevsky
,
R. M.
,
1965
, “
The Critical Temperature of Oil With Point and Line Contact Machines
,”
J. Fluids Eng. Trans. ASME
,
87
(
3
), pp.
754
759
.
32.
Fouvry
,
S.
,
Duó
,
P.
, and
Perruchaut
,
P.
,
2004
, “
A Quantitative Approach of Ti–6Al–4V Fretting Damage: Friction, Wear and Crack Nucleation
,”
Wear
,
257
(
9–10
), pp.
916
929
.
33.
Bomidi
,
J. A. R.
, and
Sadeghi
,
F.
,
2014
, “
Three-Dimensional Finite Element Elastic–Plastic Model for Subsurface Initiated Spalling in Rolling Contacts
,”
ASME J. Tribol.
,
136
(
1
), p.
011402
.
34.
Golmohammadi
,
Z.
,
Walvekar
,
A.
, and
Sadeghi
,
F.
,
2018
, “
A 3D Efficient Finite Element Model to Simulate Rolling Contact Fatigue Under High Loading Conditions
,”
Tribol. Int.
,
126
, pp.
258
269
.
35.
Weinzapfel
,
N.
, and
Sadeghi
,
F.
,
2013
, “
Numerical Modeling of Sub-Surface Initiated Spalling in Rolling Contacts
,”
Tribol. Int.
,
59
, pp.
210
221
.
36.
Ahmadi
,
A.
,
Mirzaeifar
,
R.
,
Moghaddam
,
N. S.
,
Turabi
,
A. S.
,
Karaca
,
H. E.
, and
Elahinia
,
M.
,
2016
, “
Effect of Manufacturing Parameters on Mechanical Properties of 316L Stainless Steel Parts Fabricated by Selective Laser Melting: A Computational Framework
,”
Mater. Des.
,
112
, pp.
328
338
.
37.
Ahmadi
,
A.
,
Moghaddam
,
N. S.
,
Elahinia
,
M.
,
Karaca
,
H. E.
, and
Mirzaeifar
,
R.
,
2016
, “
Finite Element Modeling of Selective Laser Melting 316l Stainless Steel Parts for Evaluating the Mechanical Properties
,”
Proceedings of the ASME 11th International Manufacturing Science and Engineering Conference
,
Blacksburg, VA
,
June 27
.
38.
Golmohammadi
,
Z.
, and
Sadeghi
,
F.
,
2019
, “
A Coupled Multibody Finite Element Model for Investigating Effects of Surface Defects on Rolling Contact Fatigue
,”
ASME J. Tribol.
,
141
(
4
), p.
041402
.
39.
Walvekar
,
A. A.
,
Morris
,
D.
,
Golmohammadi
,
Z.
,
Sadeghi
,
F.
, and
Correns
,
M.
,
2018
, “
A Novel Modeling Approach to Simulate Rolling Contact Fatigue and Three-Dimensional Spalls
,”
ASME J. Tribol.
,
140
(
3
), p.
031101
.
40.
Vijay
,
A.
, and
Sadeghi
,
F.
,
2019
, “
An Anisotropic Damage Model for Tensile Fatigue
,”
Fatigue Fract. Eng. Mater. Struct.
,
42
(
1
), pp.
129
142
.
41.
Singh
,
K.
,
Sadeghi
,
F.
,
Correns
,
M.
, and
Blass
,
T.
,
2019
, “
A Microstructure Based Approach to Model Effects of Surface Roughness on Tensile Fatigue
,”
Int. J. Fatigue
,
129
, p.
105229
.
42.
Shafiee
,
A.
,
Ahmadian
,
A.
, and
Akbari
,
A.
,
2021
, “
A Parametric Study of Mechanical Cross-coupling in Parallel-Kinematics Piezo-flexural Nano-positioning Systems
,”
Open J. Appl. Sci.
,
11
(
5
), pp.
596
613
.
43.
Hills
,
D. A.
, and
Nowell
,
D.
,
1994
, “Mechanics of Fretting Fatigue,”
Solid Mechanics and Its Applications
, Vol.
30
,
Springer
,
Kluwer Academic Publishers
.
44.
Hills
,
D. A.
,
Nowell
,
D.
, and
O’Connor
,
J. J.
,
1988
, “
On the Mechanics of Fretting Fatigue
,”
Wear
,
125
(
1–2
), pp.
129
146
.
45.
Lemaitre
,
J.
,
2012
,
A Course on Damage Mechanics
,
Springer Science & Business Media
,
Berlin/Heidelberg
.
46.
Golmohammadi
,
Z.
,
Sadeghi
,
F.
,
Walvekar
,
A.
,
Saei
,
M.
,
Mistry
,
K. K.
, and
Kang
,
Y. S.
,
2017
, “
Experimental and Analytical Investigation of Effects of Refurbishing on Rolling Contact Fatigue
,”
Wear
,
392
, pp.
190
201
.
47.
Vijay
,
A.
,
Paulson
,
N.
, and
Sadeghi
,
F.
,
2018
, “
A 3D Finite Element Modelling of Crystalline Anisotropy in Rolling Contact Fatigue
,”
Int. J. Fatigue
,
106
, pp.
92
102
.
48.
Ahmadi
,
A.
, and
Sadeghi
,
F.
,
2019
, “
Experimental and Numerical Investigation of Torsion Fatigue of a Nickel-Based Alloy at Elevated Temperature
,”
Mater. Sci. Eng. A
,
751
, pp.
263
270
.
49.
Paulson
,
N. R.
,
Golmohammadi
,
Z.
,
Walvekar
,
A. A.
,
Sadeghi
,
F.
, and
Mistry
,
K.
,
2017
, “
Rolling Contact Fatigue in Refurbished Case Carburized Bearings
,”
Tribol. Int.
,
115
, pp.
348
364
.
50.
Bomidi
,
J. A. R.
,
Weinzapfel
,
N.
,
Sadeghi
,
F.
,
Liebel
,
A.
, and
Weber
,
J.
,
2013
, “
An Improved Approach for 3D Rolling Contact Fatigue Simulations With Microstructure Topology
,”
Tribol. Trans.
,
56
(
3
), pp.
385
399
.
51.
Weinzapfel
,
N.
,
Sadeghi
,
F.
, and
Bakolas
,
V.
,
2010
, “
An Approach for Modeling Material Grain Structure in Investigations of Hertzian Subsurface Stresses and Rolling Contact Fatigue
,”
ASME J. Tribol.
,
132
(
4
), p.
041404
.
52.
Kragelsky
,
I. V.
,
Dobychin
,
M. N.
, and
Kombalov
,
V. S.
,
2013
,
Friction and Wear: Calculation Methods
,
Elsevier
,
New York
.
53.
Archard
,
J. F.
,
1980
, “
Wear Theory and Mechanisms
,”
Wear Control Handbook
, Vol.
58
.
54.
Archard
,
J. F.
, and
Hirst
,
W.
,
1956
, “
The Wear of Metals Under Unlubricated Conditions
,”
Proc. R. Soc. London. Ser. A. Math. Phys. Sci.
,
236
(
1206
), pp.
397
410
.
55.
Nikas
,
G. K.
, and
Sayles
,
R. S.
,
2009
, “
Surface Coatings and Finite-Element Analysis of Layered Fretting Contacts
,”
Proc. Inst. Mech. Eng. Part J.: J. Eng. Tribol.
,
223
(
2
), pp.
159
181
.
56.
Leonard
,
B. D.
,
Sadeghi
,
F.
,
Shinde
,
S.
, and
Mittelbach
,
M.
,
2012
, “
A Novel Modular Fretting Wear Test Rig
,”
Wear
,
274
, pp.
313
325
.
57.
American Society for Testing and Materials
,
2004
, “
ASTM E112-96 (2004) E2: Standard Test Methods for Determining Average Grain Size
,”
Filadelfia, PA
.
58.
Ahmadi
,
A.
, and
Sadeghi
,
F.
,
2021
, “
A Novel Three-Dimensional Finite Element Model to Simulate Third Body Effects on Fretting Wear of Hertzian Point Contact in Partial Slip
,”
ASME J. Tribol.
,
143
(
4
), p.
041502
.
You do not currently have access to this content.