Abstract

In order to determine the effect of working conditions on the lubricated wear behavior of Zn–40Al–2Cu–2Si alloy in the as-cast and T6 heat-treated states, its tribological properties were studied at different oil flowrates, contact pressures, and sliding speeds in comparison with SAE 660 bronze. It was observed that the friction coefficient, temperature, and wear volume of both materials decrease, but their average surface roughness increase with increasing oil flowrate. As the pressure increased, the friction coefficient and average surface roughness of the experimental materials decreased, but their temperature and wear volume increased. It was also found that the working temperature of these materials increased, but their wear volume showed a decrement and a subsequent increment with increasing sliding speed. In addition, their wear volume and average surface roughness showed opposite changes with the sliding speed. Zn–40Al–2Cu–2Si alloy in both as-cast and heat-treated conditions showed lower wear volume and friction coefficient than SAE 660 bronze. This indicates that Zn–40Al–2Cu–2Si alloy can be used to manufacture diesel engine crankshaft journal bearings.

References

1.
Goodwin
,
F. E.
, and
Ponikvar
,
A. L.
,
1989
,
Engineering Properties of Zinc Alloys
,
International Lead Zinc Research Organization
,
Durham, NC
.
2.
Philip
,
P. E.
, and
Schweitzer
,
A.
,
2003
,
Metallic Materials: Physical, Mechanical, and Corrosion Properties
,
CRC Press
,
Cleveland, OH
.
3.
Marczak
,
R. J.
, and
Ciach
,
R.
,
1973
, “
Tribological Properties of the Concentrated Al-Zn Alloys
,”
Proceedings of the 1stEuropean Tribology Congress
,
London, UK
,
Sept. 25–27
, pp.
223
227
.
4.
Gervais
,
E.
,
Levert
,
H.
, and
Bess
,
M. L.
,
1980
, “
The Development of a Family of Zinc-Based Foundry Alloys
,”
American Foundrymen's Society Transaction
,
88
, pp.
183
194
.
5.
Kuznetsov
,
G. M.
,
Barsukov
,
A. D.
, and
Krivosheeva
,
G. B.
,
1986
, “
Calculation of Phase Equilibria of the Al-Zn System
,”
Russ Metall+
,
5
, pp.
195
198
.
6.
Lyon
,
R.
,
1986
, “
The Properties and Applications of ZA Alloys
,”
Br. Foundryman
,
819
, pp.
344
349
.
7.
Calayag
,
T.
, and
Ferres
,
D.
,
1982
, “
High-Performance, High-Aluminum Zinc Alloys for Low-Speed Bearings and Bushings
,”
SAE Transactions
,
91
, pp.
2241
2251
.
8.
Murphy
,
S.
,
1999
,
High-Damping Zinc-Aluminum Alloys. Their Properties and Applications
,
International Lead Zinc Research Organization
,
Durham
.
9.
Yousefi
,
D.
,
Taghiabadi
,
R.
,
Shaeri
,
M. H.
, and
Abedinzadeh
,
P.
,
2021
, “
Enhancing the Mechanical Properties of Si Particle Reinforced ZA22 Composite by Ti–B Modification
,”
Int. J. Metalcast
,
15
(
1
), pp.
206
215
.
10.
Liu
,
T.
,
Si
,
N.
,
Liu
,
G.
,
Zhang
,
R.
, and
Qi
,
C.
,
2016
, “
Effects of Si Addition on Microstructure, Mechanical and Thermal Fatigue Properties of Zn-38Al-2.5Cu Alloys
,”
T. Nonferr Metal Soc
,
26
(
7
), pp.
1775
1182
.
11.
Villegas-Cardenas
,
J. D.
,
Saucedo-Muñoz
,
M. L.
,
Lopez-Hirata
,
V. M.
,
De Ita-De La Torre
,
A.
,
Avila-Davila
,
E. O.
, and
Gonzalez-Velazquez
,
J. L.
,
2015
, “
Effect of Homogenization Process on the Hardness of Zn–Al–Cu Alloys
,”
Int. J. Min. Met. Mater
,
22
(
10
), pp.
1076
1081
.
12.
Yang
,
C. F.
,
Pan
,
J. H.
, and
Lee
,
T. H.
,
2009
, “
Work-Softening and Anneal-Hardening Behaviors in Fine-Grained Zn–Al Alloys
,”
J. Alloy. Compd
,
468
(
1–2
), pp.
230
236
.
13.
Pola
,
A.
,
Tocci
,
M.
, and
Goodwin
,
F. E.
,
2020
, “
Review of Microstructures and Properties of Zinc Alloys
,”
Metals-Basel
,
10
(
2
), p.
253
.
14.
Savaşkan
,
T.
, and
Hekimoğlu
,
A. P.
,
2014
, “
Microstructure and Mechanical Properties of Zn–15Al-Based Ternary and Quaternary Alloys
,”
Mat. Sci. Eng. A-Struct
,
603
, pp.
52
57
.
15.
Michalik
,
R.
, and
Tomaszewska
,
A.
,
2016
, “
An Influence of Ageing on the Structure, Corrosion Resistance and Hardness of High Aluminum ZnAl40Cu3 Alloy
,”
Arch. Metall. Mater
,
61
(
1
), pp.
289
294
.
16.
Xu
,
X. L.
,
Yu
,
Z. W.
,
Huang
,
Y.
,
Shi
,
Y. Q.
,
Ji
,
Y. J.
,
Ma
,
Y. Q.
, and
Hei
,
Z.K.
2000
, “
Microstructural Development of Zn–40Al Alloy During Aging
,”
Mater. Sci. Tech. Ser
,
16
(
3
), pp.
270
274
.
17.
Bansod
,
A. V.
,
Patil
,
A. P.
,
Kalita
,
K.
,
Deshmukh
,
B. D.
, and
Khobragade
,
N.
,
2020
, “
Fuzzy Multicriteria Decision-Making-Based Optimal Zn–Al Alloy Selection in Corrosive Environment
,”
Int. J. Mater. Res
,
111
(
10
), pp.
953
963
.
18.
Babic
,
M.
,
Mitrovic
,
S.
, and
Jeremic
,
B.
,
2010
, “
The Influence of Heat Treatment on the Sliding Wear Behavior of a ZA-27 Alloy
,”
Tribol. Int.
,
43
(
1–2
), pp.
16
21
.
19.
Michalik
,
R.
,
2018
, “
Influence of Solution Heat Treatment on Phase Composition and Structure of ZnAl40Cu(1-2)Ti(1-2) Alloys
,”
Arch Metall Mater
,
63
(
1
), pp.
461
466
.
20.
Michalik
,
R.
,
Iwaniak
,
A.
, and
Wieczorek
,
J.
,
2017
, “
Influence of Heat Treatment on the Wear Resistance of the ZnAl40Cu1.5Ti1.5 Alloy
,”
Arch. Metall. Mater
,
62
(
1
), pp.
129
136
.
21.
Jia
,
H.
, and
Li
,
Y.
,
2019
, “
Texture Evolution of an Al-8Zn Alloy During ECAP and Post-ECAP Isothermal Annealing
,”
Mater. Charact
,
1155
, p.
109794
.
22.
Ritapure
,
P. P.
, and
Kharde
,
Y. R.
,
2019
, “
Evaluation of Mechanical, Microstructure and Sliding Wear Characteristics of Different Al-Zn Alloy and Composite: A Comparative Research
,”
Mater. Today-Proc
,
18
(
7
), pp.
3900
3909
.
23.
Aydın
,
M.
, and
Şenaslan
,
F.
,
2018
, “
The Effect of Quench-Aging on the Mechanical Properties of Zn-27Al-1Cu Alloy
,”
Int. J. Mater Res
,
109
(
8
), pp.
699
707
.
24.
Ilangovan
,
S.
,
Arul
,
S.
, and
Shanmugasundaram
,
A.
,
2016
, “
Effect of Zn and Cu Content on Microstructure, Hardness and Tribological Properties of Cast Al-Zn-Cu Alloys
,”
Int. J. Eng. Res. Africa
,
27
, pp.
1
10
.
25.
Prasad
,
B. K.
, and
Modi
,
O. P.
,
2009
, “
Slurry Wear Characteristics of Zinc-Based Alloys: Effects of Sand Content of Slurry, Silicon Addition to Alloy System and Traversal Distance
,”
T. Nonferr. Metal. Soc.
,
19
(
2
), pp.
277
286
.
26.
Michalik
,
R.
,
2014
, “
Structure and Mechanical Properties of ZnAl40Cu3 Alloy Modified with Rare Earth Elements
,”
Materialwiss. Werkst
,
45
(
5
).
27.
Savaşkan
,
T.
,
Hekimoğlu
,
A. P.
, and
Pürçek
,
G.
,
2004
, “
Effect of Copper Content on the Mechanical and Sliding Wear Properties of Monotectoid-Based Zinc-Aluminium-Copper Alloys
,”
Tribol. Int
,
37
(
1
), pp.
45
50
.
28.
Savaşkan
,
T.
, and
Aydıner
,
A.
,
2004
, “
Effects of Silicon Content on the Mechanical and Tribological Properties of Monotectoid-Based Zinc–Aluminium–Silicon Alloys
,”
Wear
,
257
(
3–4
), pp.
377
388
.
29.
Savaşkan
,
T.
, and
Azaklı
,
Z.
,
2008
, “
An Investigation of Lubricated Friction and Wear Properties of Zn–40Al–2Cu–2Si Alloy in Comparison With SAE 65 Bearing Bronze
,”
Wear
,
264
(
11–12
), pp.
920
928
.
30.
Gimmler
,
S.
,
Apel
,
M.
, and
Bührig-Polaczek
,
A.
,
2020
, “
Selection of Dedicated As-Cast Microstructures in Zn-Al-Cu Alloys for Bearing Applications Supported by Phase-Field Simulations
,”
Metals-Basel
,
10
(
12
), p.
1659
.
31.
Savaşkan
,
T.
, and
Bican
,
O.
,
2005
, “
Effects of Silicon Content on the Microstructural Features and Mechanical and Sliding Wear Properties of Zn–40Al–2Cu–(0–5)Si Alloys
,”
Mat. Sci. Eng. A-Struct
,
404
(
1–2
), pp.
259
269
.
32.
Bhushan
,
B.
,
2001
,
Modern Tribology Handbook
,
CRC Press
,
Cleveland, OH
.
33.
Hutchings
,
I. M.
,
1992
,
Tribology: Friction and Wear of Engineering Materials.
London
.
34.
Halling
,
J.
,
1989
,
Principles of Tribology
,
Macmillan Education
,
London
.
35.
Bican
,
O.
, and
Savaşkan
,
T.
,
2010
, “
Influence of Test Conditions on the Lubricated Friction and Wear Behaviour of Al–25Zn–3Cu Alloy
,”
Tribol. Lett
,
37
(
2
), pp.
175
182
.
36.
Hekimoğlu
,
A. P.
, and
Savaşkan
,
T.
,
2018
, “
Lubricated Wear Characteristics of Zn–15Al–3Cu–1Si Alloy and SAE 660 Bronze
,”
J. Fac. Eng. Archit. Gaz
,
33
(
1
), pp.
145
154
.
37.
Haoran
,
G.
, and
Jiaji
,
M.
,
1993
, “
Friction and Wear of AlZnPb Bearing Alloy
,”
Wear
,
169
(
2
), pp.
201
207
.
38.
Jian
,
L.
,
Laufer
,
E. E.
, and
Masounave
,
J.
,
1993
, “
Wear in Zn-Al-Si Alloys
,”
Wear
,
165
(
1
), pp.
51
56
.
39.
Azaklı
,
Z.
, and
Savaşkan
,
T.
,
2008
, “
An Examination of Friction and Sliding Wear Properties of Zn–40Al–2Cu–2Si Alloy in Case of Oil Cut Off
,”
Tribol Int
,
41
(
1
), pp.
9
16
.
40.
Bowden
,
F. P.
, and
Tabor
,
D.
,
2001
,
The Friction and Lubrication of Solids
,
Clarendon Press
,
Oxford
.
41.
Barnhurst
,
R. J.
, and
Farge
,
J. C.
,
1988
, “
A Study of the Bearing Characteristics of Zinc-Aluminum (ZA) Alloys
,”
Can. J. Metall. Mater. Sci
,
27
(
3
), pp.
225
233
.
42.
Hekimoğlu
,
A. P.
, and
Savaşkan
,
T.
,
2014
, “
Structure and Mechanical Properties of Zn-(5–25) Al Alloy
,”
Int. J. Mater. Res
,
105
(
11
), pp.
1084
1089
.
43.
Hekimoğlu
,
A. P.
, and
Savaşkan
,
T.
,
2016
, “
Effects of Contact Pressure and Sliding Speed on the Unlubricated Friction and Wear Properties of Zn-15Al-3Cu-1Si Alloy
,”
Tribol T
,
59
(
6
), pp.
1114
1121
.
44.
Savaşkan
,
T.
, and
Hekimoğlu
,
A. P.
,
2016
, “
Relationships Between Mechanical and Tribological Properties of Zn-15Al-Based Ternary and Quaternary Alloys
,”
Int. J. Mater. Res
,
107
(
7
), pp.
646
652
.
You do not currently have access to this content.