Abstract

There are several ways to characterize the wear resistance of coatings in the laboratory, almost all of them applying relatively low contact pressure, both punctually and over surface contact. Pin-on-disc, reciprocal sliding, and micro-abrasion wear tests are quite common configurations for this purpose. Thus, a gap was identified in terms of characterization of hard physical vapor deposition (PVD) coatings subject to higher levels of contact pressure. This study aims to study and compare the wear behavior of two different coatings made by PVD, a B4C (Boron Carbide) monolayer, less used, and another following a multilayer structure of CrN/CrCN/DLC, to identify the wear mechanisms involved in quite different coatings. Both coatings were initially characterized in terms of chemical composition, thickness, morphology, structure, hardness, and adhesion to the substrate, being subsequently tested in laboratory equipment for wear tests following the block-on-ring configuration and relatively high levels of contact pressure, with a view to study the failure mechanisms of the coatings and their wearrate. CrN/CrCN/DLC multilayered coatings presented a better overall wear behavior, whereas B4C coating showed a good wear behavior regarding the load and configuration used, but in line with the behavior already observed when other wear testing configurations had been used. Thus, under the conditions imposed, CrN/CrCN/DLC coating is the best option when high contact pressure is applied to the coated surfaces.

References

1.
Baptista
,
A.
,
Silva
,
F.
,
Porteiro
,
J.
,
Míguez
,
J.
, and
Pinto
,
G.
,
2018
, “
Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands
,”
Coatings
,
8
(
11
), pp.
402
424
.
2.
He
,
Q.
,
Paiva
,
J. M.
,
Kohlscheen
,
J.
,
Beake
,
B. D.
, and
Veldhuis
,
S. C.
,
2016
, “
An Integrative Approach to Coating/Carbide Substrate Design of CVD and PVD Coated Cutting Tools During the Machining of Austenitic Stainless Steel
,”
Ceram. Int.
,
46
(
4
), pp.
5149
5158
.
3.
Martinho
,
R. P.
,
Silva
,
F. J. G.
,
Martins
,
C.
, and
Lopes
,
H.
,
2019
, “
Comparative Study of PVD and CVD Cutting Tools Performance in Milling of Duplex Stainless Steel
,”
Int. J. Adv. Manuf. Technol.
,
102
(
5–8
), pp.
2423
2439
.
4.
Hu
,
S. B.
,
Tu
,
J. P.
,
Mei
,
Z.
,
Li
,
Z. Z.
, and
Zhang
,
X. B.
,
2001
, “
Adhesion Strength and High Temperature Wear Behaviour of ion Plating TiN Composite Coating With Electric Brush Plating Ni(W) Interlayer
,”
Surf. Coat. Technol.
,
141
(
2–3
), pp.
174
181
.
5.
Hussein
,
M. A.
,
Ankaha
,
N. K.
,
Kumar
,
A. M.
,
Azeem
,
M. A.
,
Saravanan
,
S.
,
Sorour
,
A. A.
, and
Aqeelib
,
N. A.
,
2020
, “
Mechanical, Biocorrosion, and Antibacterial Properties of Nanocrystalline TiN Coating for Orthopedic Applications
,”
Ceram. Int.
,
46
(
11B
), pp.
18573
18583
.
6.
Nunes
,
V.
,
Silva
,
F. J. G.
,
Andrade
,
M. F.
,
Alexandre
,
R.
, and
Baptista
,
A. P. M.
,
2017
, “
Increasing the Lifespan of High-Pressure Die Cast Molds Subjected to Severe Wear
,”
Surf. Coat. Technol.
,
332
, pp.
319
331
.
7.
Abdoos
,
M.
,
Bose
,
B.
,
Rawal
,
S.
,
Arif
,
A. F. M.
, and
Veldhuis
,
S. C.
,
2020
, “
The Influence of Residual Stress on the Properties and Performance of Thick TiAlN Multilayer Coating During dry Turning of Compacted Graphite Iron
,”
Wear
,
454–455
, p.
203342
.
8.
Fernandes
,
L.
,
Silva
,
F. J. G.
, and
Alexandre
,
R.
,
2019
, “
Study of TiAlN PVD Coating on Stamping Dies Used in Tinplate Food Package Production
,”
Micromachines
,
10
(
3
), pp.
182
198
.
9.
Tsou
,
H. T.
, and
Kowbel
,
W.
,
1995
, “
A Hybrid PACVD B4CCVD Si3N4 Coating for Oxidation Protection of Composites
,”
Carbon
,
33
(
9
), pp.
1292
1295
.
10.
Xiang
,
Q.
,
Zhang
,
D.
, and
Qin
,
J.
,
2016
, “
Catholic Electrophoretic Deposition of Nano-B4C Coating
,”
Mater. Lett.
,
176
, pp.
127
130
.
11.
Santos
,
M. J.
,
Silvestre
,
A. J.
, and
Conde
,
O.
,
2002
, “
Laser-Assisted Deposition of r-B4C Coatings Using Ethylene as Carbon Precursor
,”
Surf. Coat. Technol.
,
151–152
, pp.
160
164
.
12.
Yandouzi
,
M.
,
Böttger
,
A. J.
,
Hendrikx
,
R. W. A.
,
Brochu
,
M.
,
Richer
,
P.
,
Charest
,
A.
, and
Jodoin
,
B.
,
2010
, “
Microstructure and Mechanical Properties of B4C Reinforced Al-Based Matrix Composite Coatings Deposited by CGDS and PGDS Processes
,”
Surf. Coat. Technol.
,
205
(
7
), pp.
2234
2246
.
13.
Sokeng
,
I. T.
,
Ngom
,
B. D.
,
Msimanga
,
M.
,
Nurub
,
Z. Y.
,
Kotsedi
,
L.
,
Maaza
,
M.
, and
van Zyl
,
R. R.
,
2015
, “
Coatings Synthesised by the Pulsed Laser Ablation of a B4C/W2B5 Ceramic Composite
,”
Thin Solid Films
,
593
, pp.
5
9
.
14.
Chao
,
M.-J.
,
Niu
,
X.
,
Yuan
,
B.
,
Liang
,
E.-J.
, and
Wang
,
D.-S.
,
2006
, “
Preparation and Characterization of In Situ Synthesized B4C Particulate Reinforced Nickel Composite Coatings by Laser Cladding
,”
Surf. Coat. Technol.
,
201
(
3–4
), pp.
1102
1108
.
15.
Vaghefi
,
S. M. M.
,
Saatchi
,
A.
, and
Ebrahimian-Hoseinabadi
,
M.
,
2003
, “
Deposition and Properties of Electroless Ni–P–B4C Composite Coatings
,”
Surf. Coat. Technol.
,
168
(
2–3
), pp.
259
262
.
16.
Araghi
,
A.
, and
Paydar
,
M. H.
,
2010
, “
Electroless Deposition of Ni–P–B4C Composite Coating on AZ91D Magnesium Alloy and Investigation on Its Wear and Corrosion Resistance
,”
Mater. Des.
,
31
(
6
), pp.
3095
3099
.
17.
Ebrahimian-Hosseinabadi
,
M.
,
Azari-Dorcheh
,
K.
, and
Vaghefi
,
S. M. M.
,
2006
, “
Wear Behavior of Electroless Ni–P–B4C Composite Coatings
,”
Wear
,
260
(
1–2
), pp.
123
127
.
18.
Sarikaya
,
O.
,
Celik
,
E.
,
Okumus
,
S. C.
,
Aslanlar
,
S.
, and
Anik
,
S.
,
2005
, “
Effect on Residual Stresses in Plasma Sprayed Al–Si/B4C Composite Coatings Subjected to Thermal Shock
,”
Surf. Coat. Technol.
,
200
(
7
), pp.
2497
2503
.
19.
Sarikaya
,
O.
,
Anik
,
S.
,
Celik
,
E.
,
Okumus
,
S. C.
, and
Aslanlar
,
S.
,
2007
, “
Wear Behaviour of Plasma-Sprayed AlSi/B4C Composite Coatings
,”
Mater. Des.
,
28
(
7
), pp.
2177
2183
.
20.
Hea
,
T.
,
Hea
,
Y.
,
Lia
,
H.
,
Suc
,
Z.
,
Fan
,
Y.
, and
He
,
Z.
,
2018
, “
Fabrication of Ni-W-B4C Composite Coatings and Evaluation of Its Microhardness and Corrosion Resistance Properties
,”
Ceram. Int.
,
44
(
7
), pp.
9188
9193
.
21.
Zhao
,
Y.
,
Yu
,
T.
,
Sun
,
J.
, and
Jiang
,
S.
,
2020
, “
Microstructure and Properties of Laser Cladded B4C/TiC/Ni-Based Composite Coating
,”
Int. J. Refract. Hard. Met.
,
86
, p.
105112
.
22.
Zhao
,
Y.
,
Yu
,
T.
,
Chen
,
L.
,
Chen
,
Y.
,
Guan
,
C.
, and
Sun
,
J.
,
2020
, “
Microstructure and Wear Resistance Behavior of Ti–C–B4C-Reinforced Composite Coating
,”
Ceram. Int.
,
46
(
16
), pp.
25136
25148
.
23.
Zhu
,
H.
,
Niu
,
Y.
,
Lin
,
C.
,
Huang
,
L.
,
Ji
,
H.
, and
Zheng
,
X.
,
2013
, “
Microstructures and Tribological Properties of Vacuum Plasma Sprayed B4C–Ni Composite Coatings
,”
Ceram. Int.
,
39
(
1
), pp.
101
110
.
24.
Pushpanathan
,
D. P.
,
Alagumurthi
,
N.
, and
Devaneyan
,
S. P.
,
2020
, “
On the Microstructure and Tribological Properties of Pulse Electrodeposited Ni-B4C-TiC Nano Composite Coating on AZ80 Magnesium Alloy
,”
Surf. Interfaces
,
19
, p.
100465
.
25.
Zhang
,
P.
,
Chen
,
C.
,
Chen
,
Z.
,
Ren
,
X.
,
Shen
,
C.
, and
Feng
,
P.
,
2019
, “
Reaction Synthesis of Spark Plasma Sintered MoSi2-B4C Coatings for Oxidation Protection of Nb Alloy
,”
Ceram. Int.
,
45
(
4
), pp.
4290
4297
.
26.
Hershberger
,
J.
,
Ying
,
T.
,
Kustas
,
F.
,
Fehrenbacher
,
L.
,
Yalisove
,
S. M.
, and
Bilello
,
J. C.
,
1996
, “
Residual Stress, Atomic Structure, and Growth Morphology in B4C/SiC Multilayer Coatings
,”
Surf. Coat. Technol.
,
86–87
, pp.
237
242
.
27.
Kharanzhevskiy
,
E. V.
,
Ipatov
,
A. G.
,
Krivilyov
,
M. D.
,
Makarov
,
A. V.
,
Gil'mutdinov
,
F. Z.
, and
Volkova
,
E. G.
,
2020
, “
Ultralow Friction Behaviour of B4C-BN-MeO Composite Ceramic Coatings Deposited on Steel
,”
Surf. Coat. Technol.
,
390
, p.
125664
.
28.
Rafiei
,
M.
,
Salehi
,
M.
,
Shamanian
,
M.
, and
Motallebzadeh
,
A.
,
2014
, “
Preparation and Oxidation Behavior of B4C–Ni and B4C–TiB2–TiC–Ni Composite Coatings Produced by an HVOF Process
,”
Ceram. Int.
,
40
(
8
), pp.
13599
13609
.
29.
Krishnarao
,
R. V.
,
Alam
,
M. Z.
, and
Das
,
D. K.
,
2018
, “
In-Situ Formation of SiC, ZrB2-SiC and ZrB2-SiC-B4C-YAG Coatings for High Temperature Oxidation Protection of C/C Composites
,”
Corros. Sci.
,
141
, pp.
72
80
.
30.
Chen
,
C.
,
Feng
,
X.
, and
Shen
,
Y.
,
2017
, “
Synthesis of Al–B4C Composite Coating on Ti–6Al–4V Alloy Substrate by Mechanical Alloying Method
,”
Surf. Coat. Technol.
,
321
, pp.
8
18
.
31.
Kustas
,
F.
,
Mishra
,
B.
, and
Zhou
,
J.
,
2001
, “
Wear Behavior of B CMo Co-Sputtered Wear Coatings
,”
Surf. Coat. Technol.
,
141
(
1
), pp.
48
54
.
32.
Fernandes
,
L.
,
Silva
,
F. J. G.
,
Andrade
,
M. F.
,
Alexandre
,
R.
,
Baptista
,
A. P. M.
, and
Rodrigues
,
C.
,
2017
, “
Increasing the Stamping Tools Lifespan by Using Mo and B4C PVD Coatings
,”
Surf. Coat. Technol.
,
325
, pp.
107
119
.
33.
Huang
,
B.
,
Le
,
W.
,
Wang
,
Y.
,
Luo
,
X.
, and
Yang
,
Y.
,
2019
, “
Microstructure, Properties and Thermal Stability of W/B4C Multilayer Coating Synthesized by Ion Beam Sputtering
,”
Appl. Surf. Sci.
,
464
, pp.
10
20
.
34.
Bhowmick
,
S.
,
Sun
,
G.
, and
Alpas
,
A. T.
,
2016
, “
Low Friction Behaviour of Boron Carbide Coatings (B4C) Sliding Against Ti–6Al–4V
,”
Surf. Coat. Technol.
,
308
, pp.
316
327
.
35.
Cao
,
X.
,
Wang
,
J.
,
Liang
,
Y.
,
Zhang
,
G.
,
Shang
,
L.
,
Lua
,
Z.
, and
Xue
,
Q.
,
2020
, “
Corrosion and Tribological Investigations of the B4C Coatings Rubbing Against SiC Ball for High Relative Humidity Engineering Application
,”
Mater. Today Commun.
,
23
, p.
100924
.
36.
Hui
,
Z.
,
Li
,
Z.
,
Ju
,
P.
,
Nie
,
Y.
,
Ouyang
,
J.
, and
Tian
,
Y.
,
2019
, “
Comparative Studies of the Tribological Behaviors and Tribo-Chemical Mechanisms for AlMgB14-TiB2 Coatings and B4C Coatings Lubricated With Molybdenum Dialkyl-Dithiocarbamate
,”
Tribol. Int.
,
138
, pp.
47
58
.
37.
He
,
D.
,
Shang
,
L.
,
Lu
,
Z.
,
Zhang
,
G.
,
Wang
,
L.
, and
Xue
,
Q.
,
2017
, “
Tailoring the Mechanical and Tribological Properties of B4C/a-C Coatings by Controlling the Boron Carbide Content
,”
Surf. Coat. Technol.
,
329
, pp.
11
18
.
38.
Li
,
X.
,
Zhang
,
L.
, and
Yin
,
X.
,
2012
, “
Effect of Chemical Vapor Deposition of Si3N4, BN and B4C Coatings on the Mechanical and Dielectric Properties of Porous Si3N4 Ceramic
,”
Scr. Mater.
,
66
(
1
), pp.
33
36
.
39.
Gharam
,
A. A.
,
Lukitsch
,
M. J.
,
Balogh
,
M. P.
, and
Alpas
,
A. T.
,
2010
, “
High Temperature Tribological Behaviour of Carbon Based (B4C and DLC) Coatings in Sliding Contact With Aluminum
,”
Thin Solid Films
,
519
(
5
), pp.
1611
1617
.
40.
Malleswararao
,
K. N. D.
, and
Kumar
,
I. N. N.
,
2019
, “
Investigation of Tribological Behaviour of DLC Coating on Hypereutectic Al-Si Alloys, a Review
,”
Mater. Today Proc.
,
18
, pp.
2581
2589
.
41.
Kovacı
,
H.
,
Baran
,
Ö
,
Yetim
,
A. F.
,
Bozkurt
,
Y. B.
,
Kara
,
L.
, and
Çelik
,
A.
,
2018
, “
The Friction and Wear Performance of DLC Coatings Deposited on Plasma Nitrided AISI 4140 Steel by Magnetron Sputtering Under Air and Vacuum Conditions
,”
Surf. Coat. Technol.
,
349
, pp.
969
979
.
42.
Lan
,
R.
,
Ma
,
Z.
,
Wang
,
C.
,
Lu
,
G.
,
Yuan
,
Y.
, and
Shi
,
C.
,
2019
, “
Microstructural and Tribological Characterization of DLC Coating by In-Situ Duplex Plasma Nitriding and Arc Ion Plating
,”
Diam. Relat. Mater.
,
98
, p.
107473
.
43.
Dalibón
,
E. L.
,
Czerwiec
,
T.
,
Trava-Airoldi
,
V. J.
,
Ghafoor
,
N.
,
Rogström
,
L.
,
Odén
,
M.
, and
Brühl
,
S. P.
,
2019
, “
Characterization of DLC Coatings Over Nitrided Stainless Steel With and Without Nitriding Pre-Treatment Using Annealing Cycles
,”
J. Mater. Res. Technol.
,
8
(
2
), pp.
1653
1662
.
44.
Ghasemi
,
M. H.
,
Ghasemi
,
B.
, and
Semnani
,
H. R. M.
,
2019
, “
Wear Performance of DLC Coating on Plasma Nitrided Astaloy Mo
,”
Diam. Relat. Mater.
,
93
, pp.
8
15
.
45.
Marin
,
E.
,
Lanzutti
,
A.
,
Nakamura
,
M.
,
Zanocco
,
M.
,
Zhu
,
W.
,
Pezzotti
,
G.
, and
Andreatta
,
F.
,
2019
, “
Corrosion and Scratch Resistance of DLC Coatings Applied on Chromium Molybdenum Steel
,”
Surf. Coat. Technol.
,
378
, p.
124944
.
46.
Santiago
,
J. A.
,
Fernández-Martínez
,
I.
,
Wennberg
,
A.
,
Molina-Aldareguia
,
J. M.
,
Castillo-Rodríguez
,
M.
,
Rojas
,
T. C.
,
Sánchez-López
,
J. C.
,
González
,
M. U.
,
García-Martín
,
J. M.
,
Lie
,
H.
,
Bellido-González
,
V.
,
Monclús
,
M. A.
, and
González-Arrabal
,
R.
,
2018
, “
Adhesion Enhancement of DLC Hard Coatings by HiPIMS Metal Ion Etching Pretreatment
,”
Surf. Coat. Technol.
,
349
, pp.
787
796
.
47.
Kasiorowski
,
T.
,
Lin
,
J.
,
Soares
,
P.
,
Lepienski
,
C. M.
,
Neitzke
,
C. A.
,
de Souza
,
G. B.
, and
Torres
,
R. D.
,
2020
, “
Microstructural and Tribological Characterization of DLC Coatings Deposited by Plasma Enhanced Techniques on Steel Substrates
,”
Surf. Coat. Technol.
,
389
, p.
125615
.
48.
Tillmann
,
W.
,
Dias
,
N. F. L.
,
Stangier
,
D.
,
Hagen
,
L.
,
Schaper
,
M.
,
Hengsbach
,
F.
, and
Hoyer
,
K.-P.
,
2020
, “
Tribo-Mechanical Properties and Adhesion Behavior of DLC Coatings Sputtered Onto 36NiCrMo16 Produced by Selective Laser Melting
,”
Surf. Coat. Technol.
,
394
, p.
125748
.
49.
Zhang
,
S.
,
Liu
,
J.
, and
Zhou
,
Y.
,
2019
, “
Effect of DLC Coating on the Friction Power Loss Between Apex Seal and Housing in Small Wankel Rotary Engine
,”
Tribol. Int.
,
134
, pp.
365
371
.
50.
Shen
,
Y.
,
Liao
,
B.
,
Zhang
,
Z.
,
Wu
,
X.
,
Ying
,
M.
, and
Zhang
,
X.
,
2020
, “
Anti-Sand Erosion and Tribological Performance of Thick DLC Coatings Deposited by the Filtered Cathodic Vacuum Arc
,”
Appl. Surf. Sci.
,
533
, p.
147371
.
51.
Sakurai
,
K.
,
Hiratsuka
,
M.
,
Nakamori
,
H.
,
Namiki
,
K.
, and
Hirakuri
,
K.
,
2019
, “
Evaluation of Sliding Properties and Durability of DLC Coating for Medical Devices
,”
Diam. Relat. Mater.
,
96
, pp.
97
103
.
52.
Silva
,
F. J. G.
,
Martinho
,
R. P.
, and
Baptista
,
A. P. M.
,
2014
, “
Characterization of Laboratory and Industrial CrN/CrCN/Diamond-Like Carbon Coatings
,”
Thin Solid Films
,
550
, pp.
278
284
.
53.
Silva
,
F.
,
Martinho
,
R.
,
Andrade
,
M.
,
Baptista
,
A.
, and
Alexandre
,
R.
,
2017
, “
Improving the Wear Resistance of Moulds for the Injection of Glass Fibre–Reinforced Plastics Using PVD Coatings: A Comparative Study
,”
Coatings
,
7
(
2
), pp.
28
39
.
54.
Sui
,
X.
,
Liu
,
J.
,
Zhang
,
S.
,
Yang
,
J.
, and
Hao
,
J.
,
2018
, “
Microstructure, Mechanical and Tribological Characterization of CrN/DLC/Cr-DLC Multilayer Coating With Improved Adhesive Wear Resistance
,”
Appl. Surf. Sci.
,
439
(
5
), pp.
24
32
.
55.
Cicek
,
H.
,
2018
, “
Wear Behaviors of TiN/TiCN/DLC Composite Coatings in Different Environments
,”
Ceram. Int.
,
44
, pp.
4853
4858
.
56.
Miranda
,
J. C.
,
Ramalho
,
A.
, and
Cavadas
,
S.
,
2006
, “
Efeito da Temperatura de Revenido no Comportamento Tribológico do Aço DIN 100Cr6 (in Portuguese)
,”
Cienc. e Tecnol. dos Mater.
,
18
(
1–2
), pp.
35
42
.
You do not currently have access to this content.