Abstract

The tribological and vibration behaviors of a lubricated system are often studied separately. However, in recent years, the combination of tribology and mechanical vibration significantly contributes in analyzing and solving many practical problems. The main objective of this study is to establish empirical equations that describe friction–-vibration interactions under dynamic (sliding) lubricated contacts. The effects of operating conditions on the tribological and vibration behaviors of lubricating oils having different viscosities were experimentally investigated using a four-ball wear test machine. The results indicated that the vibration velocity tends to increase with the sliding velocity. With a lower combination of ratio of the vibration velocity to the sliding velocity and the specific film thickness, lower friction coefficients were observed in the boundary and mixed lubrication regimes. The mean wear scar diameters exhibited positive correlations with the amplitudes of vibration accelerations. The empirical equations provide basic information for the prediction of friction variation by measuring vibration signals.

References

1.
Chowdhury
,
M. A.
,
Nuruzzaman
,
D. M.
, and
Rahaman
,
M. L.
,
2011
, “
Influence of External Horizontal Vibration on the Coefficient of Friction of Aluminum Sliding Against Stainless Steel
,”
Ind. Lub. Trib.
,
63
(
3
), pp.
152
157
.
2.
Sudeep
,
U.
,
Pandey
,
R. K.
, and
Tandon
,
N.
,
2013
, “
Effects of Surface Texturing on Friction and Vibration Behaviors of Sliding Lubricated Concentrated Point Contacts Under Linear Reciprocating Motion
,”
Tribol. Int.
,
62
, pp.
198
207
.
3.
Singh
,
J.
,
Kumar
,
D.
, and
Tandon
,
N.
,
2018
, “
Tribological and Vibration Studies on Newly Developed Nanocomposite Greases Under Boundary Lubrication Regime
,”
ASME J. Tribol.
,
104
(
3
), p.
032001
.
4.
Wu
,
C.
,
Yang
,
K.
,
Chen
,
Y.
,
Ni
,
J.
,
Yao
,
L.
, and
Li
,
X.
,
2021
, “
Investigation of Friction and Vibration Performance of Lithium Complex Grease Containing Nano-Particles on Rolling Bearing
,”
Tribol. Int.
,
155
, p.
106761
.
5.
Chen
,
G. S.
,
2014
,
Handbook of Friction-Vibration Interactions
, 1st ed.,
Woodhead Publishing
,
Sawston, UK
.
6.
Gutowski
,
P.
, and
Leus
,
M.
,
2012
, “
The Effect of Longitudinal Tangential Vibrations on Friction and Driving Forces in Sliding Motion
,”
Tribol. Int.
,
55
, pp.
108
118
.
7.
Wang
,
P.
,
Ni
,
H.
,
Wang
,
R.
,
Li
,
Z.
, and
Wang
,
Y.
,
2016
, “
Experimental Investigation of the Effect of In-Plane Vibrations on Friction for Different Materials
,”
Tribol. Int.
,
99
, pp.
237
247
.
8.
Choi
,
J. H.
,
Kwan
,
S. K.
,
Ko
,
H. E.
,
Park
,
J. H.
,
Kim
,
D. K.
,
Park
,
H. W.
, and
Caron
,
A.
,
2019
, “
Effect of Normal Contact Vibration on Nano-Scale Friction
,”
Lubricants
,
7
(
11
), p.
99
.
9.
Sinou
,
J. J.
,
Cayer-Barrioz
,
J.
, and
Berro
,
H.
,
2013
, “
Friction-Induced Vibration of a Lubricated Mechanical System
,”
Tribol. Int.
,
61
, pp.
156
168
.
10.
Di Bartolomeo
,
M.
,
Lacerra
,
G.
,
Baillet
,
L.
,
Chatelet
,
E.
, and
Massi
,
F.
,
2017
, “
Parametrical Experiment and Numerical Analysis on Friction-Induced Vibrations by a Simple Frictional System
,”
Tribol. Int.
,
112
, pp.
47
57
.
11.
Lacerra
,
G.
,
Di Bartolomeo
,
M.
,
Milana
,
S.
,
Baillet
,
L.
,
Chatelet
,
E.
, and
Massi
,
F.
,
2018
, “
Validation of a New Frictional Law for Simulating Friction-Induced Vibrations of Rough Surfaces
,”
Tribol. Int.
,
121
, pp.
468
480
.
12.
Lai
,
V. V.
,
Chiello
,
O.
,
Brunel
,
J. F.
, and
Dufrénoy
,
P.
,
2019
, “
Full Finite Element Models and Reduction Strategies for the Simulation of Friction-Induced Vibrations of Rolling Contact System
,”
J. Sound Vib.
,
444
, pp.
197
215
.
13.
Sandeep
,
C. S.
, and
Senetakis
,
K.
,
2019
, “
An Experimental Investigation of the Microslip Displacement of Geological Materials
,”
Comput. Geotech.
,
107
, pp.
55
67
.
14.
Tonazzi
,
D.
,
Massi
,
F.
,
Salipante
,
M.
,
Baillet
,
L.
, and
Berthier
,
Y.
,
2019
, “
Estimation of the Normal Contact Stiffness for Frictional Interface in Sticking and Sliding Conditions
,”
Lubricants
,
7
(
7
), p.
56
.
15.
Sandeep
,
C. S.
,
Li
,
S.
, and
Senetakis
,
K.
,
2021
, “
Scale and Surface Morphology Effects on the Micromechanical Contact Behavior of Granular Materials
,”
Tribol. Int.
,
159
, p.
106929
.
16.
Fukagai
,
S.
,
Marshall
,
M. B.
, and
Lewis
,
R.
,
2022
, “
Transition of the Friction Behavior and Contact Stiffness Due to Repeated High-Pressure Contact and Slip
,”
Tribol. Int.
,
170
, p.
107487
.
17.
Wu
,
H. W.
,
Chen
,
Y. Y.
, and
Horng
,
J. H.
,
2018
, “
The Analysis of Three-Body Contact Temperature Under the Different Third Particle Size, Density, and Value of Friction
,”
Micromachines
,
8
(
10
), p.
302
.
18.
Horng
,
J. H.
,
Yu
,
C. C.
, and
Chen
,
Y. Y.
,
2022
, “
Tribological Characteristics and Load-Sharing of Point-Contact Interface in Three-Body Mixed Lubrication
,”
ASME J. Tribol.
,
144
(
5
), p.
052201
.
19.
Sun
,
D.
,
Li
,
G.
,
Wei
,
H.
, and
Liao
,
H.
,
2015
, “
Experimental Study on the Chaotic Attractor Evolvement of the Friction Vibration in a Running-In Process
,”
Tribol. Int.
,
88
, pp.
290
297
.
20.
Sun
,
D.
,
Li
,
G.
,
Wei
,
H.
,
Liao
,
H.
, and
Liu
,
D.
,
2015
, “
Investigation on Frictional Vibration Behavior of Tribological Pairs Under Different Wear States
,”
ASME J. Tribol.
,
137
(
2
), p.
021606
.
21.
Liu
,
T.
,
Li
,
G.
,
Wei
,
H.
, and
Sun
,
D.
,
2016
, “
Experimental Observation of Cross Correlation Between Tangential Friction Vibration and Normal Friction Vibration in a Running-In Process
,”
Tribol. Int.
,
97
, pp.
77
88
.
22.
Zhou
,
G.
,
Li
,
P.
,
Liao
,
D.
,
Zhang
,
Y.
, and
Zhong
,
P.
,
2020
, “
The Friction-Induced Vibration of Water-Lubricated Rubber Bearings During the Shutdown Process
,”
Materials
,
13
(
24
), p.
5818
.
23.
Zhou
,
Y.
,
Peng
,
M.
,
Zuo
,
X.
, and
Xu
,
J.
,
2022
, “
Correlation Between Friction Coefficient and Friction Vibration in Running-In Process Based on Cross Recurrence Plots
,”
ASME J. Tribol.
,
144
(
1
), p.
011703
.
24.
Rouzic
,
J. L.
,
Bot
,
A. L.
,
Perret-Liaudet
,
J.
,
Guibert
,
M.
,
Rusanov
,
A.
,
Douminge
,
L.
,
Bretagnol
,
F.
, and
Mazuyer
,
D.
,
2013
, “
Friction-Induced Vibration by Stribeck’s Law: Application to Wiper Blade Squeal Noise
,”
Tribol. Lett.
,
49
(
3
), pp.
563
572
.
25.
Xing
,
P.
,
Li
,
G.
,
Gao
,
H.
, and
Wang
,
G.
,
2020
, “
Experimental Investigation on Identifying Friction State in Lubricated Tribosystem Based on Friction-Induced Vibration Signals
,”
Mech. Syst. Signal Process.
,
138
, p.
106590
.
26.
Wang
,
H.
,
Liu
,
Z.
,
Zou
,
L.
, and
Yang
,
J.
,
2017
, “
Influence of Both Friction and Wear on the Vibration of Marine Water Lubricated Rubber Bearing
,”
Wear
,
376–377
, pp.
920
930
.
27.
Storck
,
H.
,
Littmann
,
W.
,
Wallaschek
,
J.
, and
Mracek
,
M.
,
2002
, “
The Effect of Friction Reduction in Presence of Ultrasonic Vibrations and Its Relevance to Travelling Wave Ultrasonic Motors
,”
Ultrasonics
,
40
(
1–8
), pp.
379
383
.
28.
Yang
,
C. L.
,
Wu
,
C. S.
, and
Shi
,
L.
,
2018
, “
Analysis of Friction Reduction Effect Due to Ultrasonic Vibration Exerted in Friction Stir Welding
,”
J. Manuf. Process.
,
35
, pp.
118
126
.
29.
Murakawa
,
M.
, and
Jin
,
M.
,
2001
, “
The Utility of Radially and Ultrasonically Vibrated Dies in the Wire Drawing Process
,”
J. Mater. Process. Technol.
,
113
(
1–3
), pp.
81
86
.
30.
Liu
,
S.
,
Shan
,
X.
,
Cao
,
H.
, and
Xie
,
T.
,
2020
, “
Finite Element Analysis on Ultrasonic Drawing Process of Fine Titanium Wire
,”
Metals
,
10
(
5
), p.
575
.
31.
Wu
,
L.
,
Zhao
,
C.
,
Cao
,
M.
, and
Han
,
X.
,
2021
, “
Effect of Ultrasonic and Low Frequency Vibrations on Friction Coefficient at Die Radius in Deep Drawing Process
,”
J. Manuf. Process.
,
71
, pp.
56
69
.
32.
Lin
,
J.
,
Li
,
J.
,
Liu
,
T.
,
Zhu
,
L.
,
Chu
,
X.
,
Zhao
,
G.
, and
Guan
,
Y.
,
2021
, “
Evaluation of Friction Reduction and Frictionless Stress in Ultrasonic Vibration Forming Process
,”
J. Mater. Process. Technol.
,
288
, p.
116881
.
33.
Xu
,
Y.
,
Wan
,
Z.
,
Zou
,
P.
,
Huang
,
W.
, and
Zhang
,
G.
,
2020
, “
Experimental Study on Cutting Force in Ultrasonic Vibration-Assisted Turning of 304 Austenitic Stainless Steel
,”
Proc. Inst. Mech. Eng. B
,
235
(
3
), pp.
494
513
.
34.
Bai
,
W.
,
Roy
,
A.
,
Guo
,
L.
,
Xu
,
J.
, and
Silberschmidt
,
V. V.
,
2021
, “
Analytical Prediction of Shear Angle and Frictional Behavior in Vibration-Assisted Cutting
,”
J. Manuf. Process.
,
62
, pp.
37
46
.
35.
Ning
,
F.
, and
Cong
,
W.
,
2020
, “
Ultrasonic Vibration-Assisted (UV-A) Manufacturing Processes: State of the Art and Future Perspectives
,”
J. Manuf. Process.
,
51
, pp.
174
190
.
36.
Saruhan
,
H.
,
Sandemir
,
S.
,
Çiçek
,
A.
, and
Uygur
,
I.
,
2014
, “
Vibration Analysis of Sliding Element Bearings Defects
,”
J. Appl. Res. Technol.
,
12
(
3
), pp.
384
395
.
37.
Kundu
,
P.
,
Darpe
,
A. K.
, and
Kulkarni
,
M. S.
,
2019
, “
A Correlation Coefficient Based Vibration Indicator for Detecting Natural Pitting Progression in Spur Gears
,”
Mech. Syst. Signal. Process.
,
129
, pp.
741
763
. doi.org/10.1016/j.ymssp.2019.04.058
38.
Sonawane
,
P. R.
, and
Chandrasekaran
,
M.
,
2020
, “
Investigation of Gear Pitting Defect Using Vibration Characteristics in a Single-Stage Gearbox
,”
Int. J. Elec. Eng. Educ.
,
57
(
3
), pp.
272
278
.
39.
Moosavian
,
A.
,
Najafi
,
G.
,
Ghobadian
,
B.
,
Mirsalim
,
M.
,
Jafari
,
S. M.
, and
Sharghi
,
P.
,
2016
, “
Piston Scuffing Fault and Its Identification in an IC Engine by Vibration Analysis
,”
Appl. Acoust.
,
102
, pp.
40
48
.
40.
Ramteke
,
S. M.
,
Chelladurai
,
H.
, and
Amarnath
,
M.
,
2020
, “
Diagnosis of Liner Scuffing Fault of a Diesel Engine via Vibration and Acoustic Emission Analysis
,”
J. Vib. Eng. Technol.
,
8
(
6
), pp.
815
833
.
41.
Chern
,
S. Y.
,
Ta
,
T. N.
,
Horng
,
J. H.
, and
Wu
,
Y. S.
,
2021
, “
Wear and Vibration Behavior of ZDDP-Containing Oil Considering Scuffing Failure
,”
Wear
,
478–479
, p.
203923
.
42.
Matveevsky
,
R. M.
,
1965
, “
The Critical Temperature of Oil With Point and Line Contact Machines
,”
ASME J. Fluids Eng.
,
87
(
3
), pp.
754
759
.
43.
Horng
,
J. H.
,
1998
, “
True Friction Power Intensity and Scuffing in Sliding Contacts
,”
ASME J. Tribol.
,
120
(
4
), pp.
829
834
.
44.
Iqbal
,
S.
,
Al-Bender
,
F.
,
Ompusunggu
,
A. P.
,
Pluymers
,
B.
, and
Desmet
,
W.
,
2015
, “
Modeling and Analysis of Wet Friction Clutch Engagement Dynamics
,”
Mech. Syst. Signal Process.
,
60–61
, pp.
420
436
.
45.
Lee
,
S. K.
, and
Amarnath
,
M.
,
2016
, “
Experimental Investigations to Establish Correlation Between Stribeck Curve, Specific Film Thickness and Statistical Parameters of Vibration and Sound Signals in a Spur Gear System
,”
J. Vib. Control
,
22
(
6
), pp.
1667
1681
.
46.
Zhang
,
J.
,
Yang
,
P.
,
Wang
,
J.
, and
Guo
,
F.
,
2015
, “
The Effect of an Oscillatory Entrainment Velocity on the Film Thickness in Thermal EHL Point Contact
,”
Tribol. Int.
,
90
, pp.
519
532
.
47.
Fryza
,
J.
,
Sperka
,
P.
,
Krupka
,
I.
, and
Hartl
,
M.
,
2018
, “
Effects of Lateral Harmonic Vibrations on Film Thickness in EHL Point Contacts
,”
Tribol. Int.
,
117
, pp.
236
249
.
48.
Sakai
,
Y.
, and
Tanaka
,
T.
,
2020
, “
Influence of Lubricant on Nonlinear Characteristics of Linear Rolling Guideway
,”
Tribol. Int.
,
144
, p.
106124
.
49.
Jakobsen
,
M. O.
,
Herskind
,
E. S.
,
Bjerge
,
K.
,
Ahrendt
,
P.
,
Pedersen
,
C. F.
, and
Knudsen
,
M. B.
,
2021
, “
Vibration Signatures in Ball Bearings as a Function of Lubricant Viscosity Ratio κ, Under Alternating Lubrication Conditions
,”
Tribol. Int.
,
156
, p.
106840
.
50.
ASTM D4172-20
,
2020
,
Standard Test Method for Wear Preventive Characteristics of Lubricating Fluid (Four-Ball Method)
,
ASTM International
,
West Conshohocken, PA
.
51.
Hsu
,
S. M.
, and
Gates
,
R. S.
,
2006
, “
Effect of Materials on Tribochemical Reactions Between Hydrocarbons and Surfaces
,”
J. Phys. D: Appl. Phys.
,
39
(
15
), pp.
3128
3137
.
52.
Mechika
,
M. A.
,
Rooij
,
M. B.
,
Mishra
,
T.
,
Mattews
,
D. T. A.
,
Jacobs
,
L.
, and
Schipper
,
D. J.
,
2021
, “
Study of Wear Particles Formation at Single Asperity Contact: An Experimental and Numerical Approach
,”
Wear
,
470–471
, p.
203644
.
53.
Ren
,
J.
,
He
,
H.
,
Lau
,
K.
, and
Senetakis
,
K.
,
2021
, “
Influence of Iron Oxide Coating on the Tribological Behavior of Sand Grain Contacts
,”
Acta Geotech.
, pp.
1
23
.
54.
Sandeep
,
C. S.
, and
Senetakis
,
K.
,
2018
, “
Grain-Scale Mechanics of Quartz Sand Under Normal and Tangential Loading
,”
Tribol. Int.
,
117
, pp.
261
271
.
55.
Masjedi
,
M.
, and
Khonsari
,
M. M.
,
2015
, “
On the Effect of Surface Roughness in Point-Contact EHL: Formulas for Film Thickness and Asperity Load
,”
Tribol. Int.
,
82
, pp.
228
244
.
56.
Guegan
,
J.
,
Kadiric
,
A.
,
Gabelli
,
A.
, and
Spikes
,
H.
,
2016
, “
The Relationship Between Friction and Film Thickness in EHD Point Contacts in the Presence of Longitudinal Roughness
,”
Tribol. Lett.
,
64
(
3
), p.
33
.
57.
Ke
,
N.
,
Feng
,
H. T.
,
Chen
,
Z. T.
,
Ou
,
Y.
,
Feng
,
J. W.
, and
Ding
,
S.
,
2017
, “
Improvement of the Damping Capacity of the Linear Damper With an Oil Groove in the Linear Guideway System
,”
Adv. Mech. Eng.
,
9
(
8
), pp.
4
8
.
58.
Feng
,
K.
,
Smith
,
W. A.
,
Randall
,
R. B.
,
Wu
,
H.
, and
Peng
,
Z.
,
2022
, “
Vibration-Based Monitoring and Prediction of Surface Profile Change and Pitting Density in a Spur Gear Wear Process
,”
Mech. Syst. Signal Process.
,
165
, p.
108319
.
59.
Xiao
,
W.
,
Li
,
J.
,
Pan
,
T.
,
Zhang
,
X.
, and
Huang
,
Y.
,
2017
, “
Investigation Into the Influence of Particles’ Friction Coefficient on Vibration Suppression in Gear Transmission
,”
Mech. Mach. Theory
,
108
, pp.
217
230
.
60.
Horng
,
J. H.
,
Lin
,
J. F.
, and
Li
,
K. Y.
,
1995
, “
Effect of Surface Roughness on Steel Roller Scuffing
,”
Wear
,
184
(
2
), pp.
203
212
.
61.
Horng
,
J. H.
,
Lin
,
J. F.
, and
Li
,
K. Y.
,
1996
, “
Scuffing as Evaluated From the Viewpoint of Surface Roughness and Friction Energy
,”
ASME J. Tribol.
,
118
(
3
), pp.
669
675
.
62.
Yoo
,
S.
, and
Kim
,
D.
,
2016
, “
Effects of Vibration Frequency and Amplitude on Friction Reduction and Wear Characteristics of Silicon
,”
Tribol. Int.
,
94
, pp.
198
206
.
You do not currently have access to this content.