Abstract

Reducing the sulfur content in fossil diesel is recognized to create cleaner air. One of the efforts that can be made to reduce sulfur is involving the hydrodesulfurization process in the oil refinery. However, that process is responsible for decreasing the natural lubricating compounds in fossil diesel. Then, it results in the low lubricity of fossil diesel which increases friction and wears scars on the metal surface of machinery components. Therefore, it is necessary to use additives to improve the lubricity properties of fossil diesel. Additives can be derived from vegetable oil-based triglyceride compounds (bio-additives). The primary bio-additives class studied in lubricity improver is the ester group. Many challenges need to be addressed by researchers to obtain such a bio-additive to perform better. This paper focuses on bio-additives and their lubricity properties between 1995 and 2020. We review the bio-additives class and its effect on fossil diesel lubricity, the relationship between structure and lubricity, the bio-additives synthesis route, and the lubricity testing method. Finally, the challenges and future research direction in developing lubricity bio-additives for low sulfur diesel fossil are also highlighted (including the strengths, weaknesses, opportunities, and threats analysis and its strategies briefly), which will be an essential consideration in synthesizing new lubricity improver bio-additives for low sulfur diesel.

References

1.
Kalghatgi
,
G. T.
,
2014
, “
The Outlook for Fuels for Internal Combustion Engines
,”
Int. J. Engine Res.
,
15
(
4
), pp.
383
398
.
2.
Exxonmobil
,
2019
, “
2019 Outlook for Energy: A Perspective to 2040
.”
3.
Osaka
,
Y.
,
Kito
,
T.
,
Kobayashi
,
N.
,
Kurahara
,
S.
,
Huang
,
H.
,
Yuan
,
H.
, and
He
,
Z.
,
2015
, “
Removal of Sulfur Dioxide From Diesel Exhaust Gases by Using Dry Desulfurization MnO2 Filter
,”
Sep. Purif. Technol.
,
150
, pp.
80
85
.
4.
Anastasopolos
,
A. T.
,
Sofowote
,
U. M.
,
Hopke
,
P. K.
,
Rouleau
,
M.
,
Shin
,
T.
,
Dheri
,
A.
,
Peng
,
H.
, et al
,
2021
, “
Air Quality in Canadian Port Cities After Regulation of Low-Sulphur Marine Fuel in the North American Emissions Control Area
,”
Sci. Total Environ.
,
791
, p.
147949
.
5.
Lelieveld
,
J.
,
Pozzer
,
A.
,
Pöschl
,
U.
,
Fnais
,
M.
,
Haines
,
A.
, and
Münzel
,
T.
,
2020
, “
Loss of Life Expectancy From Air Pollution Compared to Other Risk Factors: A Worldwide Perspective
,”
Cardiovasc. Res.
,
116
(
11
), pp.
1910
1917
.
6.
Rahpeyma
,
S. S.
, and
Raheb
,
J.
,
2019
, “
Microalgae Biodiesel as a Valuable Alternative to Fossil Fuels
,”
Bioenergy Res.
,
12
(
4
), pp.
958
965
.
7.
Datta
,
A.
, and
Mandal
,
B. K.
,
2016
, “
A Comprehensive Review of Biodiesel as an Alternative Fuel for Compression Ignition Engine
,”
Renew. Sustain. Energy Rev.
,
57
, pp.
799
821
.
8.
Erdogan
,
S.
, and
Sayin
,
C.
,
2018
, “
Selection of the Most Suitable Alternative Fuel Depending on the Fuel Characteristics and Price by the Hybrid MCDM Method
,”
Sustainability
,
10
(
5
), pp.
1
15
.
9.
Elwan
,
H. A.
,
Zaky
,
M. T.
,
Farag
,
A. S.
,
Soliman
,
F. S.
, and
Ezel Dea Hassan
,
M.
,
2017
, “
A Coupled Extractive-Oxidative Process for Desulfurization of Gasoline and Diesel Fuels Using a Bifunctional Ionic Liquid
,”
J. Mol. Liq.
,
248
, pp.
549
555
.
10.
Sadare
,
O. O.
,
Obazu
,
F.
, and
Daramola
,
M. O.
,
2017
, “
Biodesulfurization of Petroleum Distillates—Current Status, Opportunities and Future Challenges
,”
Environments
,
4
(
4
), pp.
1
20
.
11.
Kozina
,
A.
,
Radica
,
G.
, and
Nižetić
,
S.
,
2020
, “
Analysis of Methods Towards Reduction of Harmful Pollutants From Diesel Engines
,”
J. Cleaner Prod.
,
262
, p.
121105
.
12.
Miles
,
P. C.
, and
Andersson
,
Ö.
,
2016
, “
A Review of Design Considerations for Light-Duty Diesel Combustion Systems
,”
Int. J. Engine Res.
,
17
(
1
), pp.
6
15
.
13.
Reveille
,
B.
,
Kleemann
,
A.
,
Knop
,
V.
, and
Habchi
,
C.
,
2006
, “
Potential of Narrow Angle Direct Injection Diesel Engines for Clean Combustion: 3D CFD Analysis
,”
SAE Tech. Pap.
,
2006
(
724
), pp.
3
17
.
14.
Hsieh
,
P. Y.
, and
Bruno
,
T. J.
,
2015
, “
A Perspective on the Origin of Lubricity in Petroleum Distillate Motor Fuels
,”
Fuel Process. Technol.
,
129
, pp.
52
60
.
15.
Hsieh
,
P. Y.
,
Widegren
,
J. A.
,
Slifka
,
A. J.
,
Hagen
,
A. J.
, and
Rorrer
,
R. A. L.
,
2015
, “
Direct Measurement of Trace Polycyclic Aromatic Hydrocarbons in Diesel Fuel With 1H and 13C NMR Spectroscopy: Effect of PAH Content on Fuel Lubricity
,”
Energy Fuels
,
29
(
7
), pp.
4289
4297
.
16.
Matzke
,
M.
,
Jess
,
A.
, and
Litzow
,
U.
,
2015
, “
Polar Nitrogen-Containing Aromatic Compounds as Carriers of Natural Diesel Lubricity
,”
Fuel
,
140
, pp.
770
777
.
17.
Von Wielligh
,
A. J.
,
Burger
,
N. D. L.
, and
Wilcocks
,
T. L.
,
2003
, “
Diesel Engine Failures Due to Combustion Disturbances, Caused by Fuel With Insufficient Lubricity
,”
Ind. Lubr. Tribol.
,
55
(
2–3
), pp.
65
75
.
18.
Holmberg
,
K.
, and
Erdemir
,
A.
,
2017
, “
Influence of Tribology on Global Energy Consumption, Costs and Emissions
,”
Friction
,
5
(
3
), pp.
263
284
.
19.
Holmberg
,
K.
, and
Erdemir
,
A.
,
2019
, “
The Impact of Tribology on Energy Use and CO2 Emission Globally and in Combustion Engine and Electric Cars
,”
Tribol. Int.
,
135
, pp.
389
396
.
20.
Hazrat
,
M. A.
,
Rasul
,
M. G.
, and
Khan
,
M. M. K.
,
2015
, “
Lubricity Improvement of the Ultra-Low Sulfur Diesel Fuel With the Biodiesel
,”
Energy Procedia
,
75
, pp.
111
117
.
21.
Peng
,
D. X.
,
2017
, “
Biodiesel Improves Lubricity of Low-Sulfur Petro-Diesels
,”
Chem. Technol. Fuels Oils
,
52
(
6
), pp.
699
703
.
22.
Sun
,
L.
,
Li
,
M.
,
Ma
,
C.
,
Li
,
P.
, and
Li
,
J.
,
2016
, “
Preparation and Evaluation of Lubricity Additives for Low Sulfur Diesel Fuel
,”
Energy Fuels
,
30
(
7
), pp.
5672
5676
.
23.
Anastopoulos
,
G.
,
Lois
,
E.
,
Serdari
,
A.
,
Zanikos
,
F.
,
Stournas
,
S.
, and
Kalligeros
,
S.
,
2001
, “
Lubrication Properties of Low-Sulfur Diesel Fuels in the Presence of Specific Types of Fatty Acid Derivatives
,”
Energy Fuels
,
15
(
12
), pp.
106
112
.
24.
Gray
,
C.
,
Wilcox
,
A.
,
Scott
,
M.
,
Webster
,
G.
,
St.-Pierre
,
P.
,
Maidens
,
M.
,
Mitchell
,
K.
, and
Sporleder
,
D.
,
2002
, “
Investigation of Diesel Fuel Lubricity and Evaluation of Bench Tests to Correlate With Medium and Heavy Duty Diesel Fuel Injection Equipment Component Wear—Part 1
,” SAE Technical Paper.
25.
Zhang
,
S. W.
,
2013
, “
Green Tribology: Fundamentals and Future Development
,”
Friction
,
1
(
2
), pp.
186
194
.
26.
Anand
,
A.
,
Irfan Ul Haq
,
M.
,
Vohra
,
K.
,
Raina
,
A.
, and
Wani
,
M. F.
,
2017
, “
Role of Green Tribology in Sustainability of Mechanical Systems: A State of the Art Survey
,”
Mater. Today: Proc.
,
4
(
2
), pp.
3659
3665
.
27.
Zhang
,
S. W.
,
2016
, “
Recent Developments of Green Tribology
,”
Surf. Topogr.: Metrol. Prop.
,
4
(
2
), pp.
1
14
.
28.
Biswas
,
A.
,
Adhvaryu
,
A.
,
Gordon
,
S. H.
,
Erhan
,
S. Z.
, and
Willett
,
J. L.
,
2005
, “
Synthesis of Diethylamine-Functionalized Soybean Oil
,”
J. Agric. Food Chem.
,
53
(
24
), pp.
9485
9490
.
29.
Schuchardt
,
U.
,
Sercheli
,
R.
, and
Vargas
,
R. M.
,
1998
, “
Transesterification of Vegetable Oils: A Review
,”
J. Braz. Chem. Soc.
,
9
(
3
), pp.
199
210
.
30.
Rezania
,
S.
,
Oryani
,
B.
,
Park
,
J.
,
Hashemi
,
B.
,
Yadav
,
K. K.
,
Kwon
,
E. E.
,
Hur
,
J.
, and
Cho
,
J.
,
2019
, “
Review on Transesterification of Non-Edible Sources for Biodiesel Production With a Focus on Economic Aspects, Fuel Properties and By-Product Applications
,”
Energy Convers. Manage.
,
201
, p.
112155
.
31.
Sajjadi
,
B.
,
Raman
,
A. A. A.
, and
Arandiyan
,
H.
,
2016
, “
A Comprehensive Review on Properties of Edible and Non-Edible Vegetable Oil-Based Biodiesel: Composition, Specifications and Prediction Models
,”
Renew. Sustain. Energy Rev.
,
63
, pp.
62
92
.
32.
Rezende
,
M. J. C.
,
Perruso
,
C. R.
,
Azevedo
,
D. A.
, and
Pinto
,
A. C.
,
2005
, “
Characterization of Lubricity Improver Additive in Diesel by Gas Chromatography–Mass Spectrometry
,”
J. Chromatogr. A
,
1063
(
1–2
), pp.
211
215
.
33.
Bart
,
J. C. J.
,
Gucciardi
,
E.
, and
Cavallaro
,
S.
,
2013
,
Biolubricants: Science and Technology
,
J. C. J.
Bart
,
E.
Gucciardi
, and
S.
Cavallaro
, eds.,
Woodhead Publishing Ltd
,
Cambridge, UK
, pp.
249
350
.
34.
Minami
,
I.
, and
Mori
,
S.
,
2007
, “
Concept of Molecular Design Towards Additive Technology for Advanced Lubricants
,”
Lubr. Sci.
,
19
(
4
), pp.
127
149
.
35.
Loehlé
,
S.
,
Matta
,
C.
,
Minfray
,
C.
,
Le Mogne
,
T.
,
Iovine
,
R.
,
Obara
,
Y.
,
Miyamoto
,
A.
, and
Martin
,
J. M.
,
2015
, “
Mixed Lubrication of Steel by C18 Fatty Acids Revisited. Part I: Toward the Formation of Carboxylate
,”
Tribol. Int.
,
82
, pp.
218
227
.
36.
Lundgren
,
S. M.
,
Ruths
,
M.
,
Danerlöv
,
K.
, and
Persson
,
K.
,
2008
, “
Effects of Unsaturation on Film Structure and Friction of Fatty Acids in a Model Base Oil
,”
J. Colloid Interface Sci.
,
326
(
2
), pp.
530
536
.
37.
Zachariah
,
Z.
,
Nalam
,
P. C.
,
Ravindra
,
A.
,
Raju
,
A.
,
Mohanlal
,
A.
,
Wang
,
K.
,
Castillo
,
R. V.
, and
Espinosa-Marzal
,
R. M.
,
2020
, “
Correlation Between the Adsorption and the Nanotribological Performance of Fatty Acid-Based Organic Friction Modifiers on Stainless Steel
,”
Tribol. Lett.
,
68
(
1
), pp.
1
16
.
38.
Ratoi
,
M.
,
Anghel
,
V.
,
Bovington
,
C.
, and
Spikes
,
H. A.
,
2000
, “
Mechanisms of Oiliness Additives
,”
Tribol. Int.
,
33
(
3–4
), pp.
241
247
.
39.
Allen
,
C. M.
, and
Drauglis
,
E.
,
1969
, “
Boundary Layer Lubrication: Monolayer or Multilayer
,”
Wear
,
14
(
5
), pp.
363
384
.
40.
Shaigan
,
N.
,
Neill
,
W. S.
,
Littlejohns
,
J.
,
Song
,
D.
, and
Lafrance
,
S.
,
2020
, “
Adsorption of Lubricity Improver Additives on Sliding Surfaces
,”
Tribol. Int.
,
141
, p.
105920
.
41.
Minami
,
I.
,
2017
, “
Molecular Science of Lubricant Additives
,”
Appl. Sci
,
7
(
5
), p.
445
.
42.
Loehlé
,
S.
,
Matta
,
C.
,
Minfray
,
C.
,
Le Mogne
,
T.
,
Iovine
,
R.
,
Obara
,
Y.
,
Miyamoto
,
A.
, and
Martin
,
J. M.
,
2016
, “
Mixed Lubrication of Steel by C18 Fatty Acids Revisited. Part II: Influence of Some Key Parameters
,”
Tribol. Int.
,
94
, pp.
207
216
.
43.
Maglinao
,
R. L.
,
Resurreccion
,
E. P.
,
Kumar
,
S.
,
Maglinao
,
A. L.
,
Capareda
,
S.
, and
Moser
,
B. R.
,
2019
, “
Hydrodeoxygenation–Alkylation Pathway for the Synthesis of a Sustainable Lubricant Improver From Plant Oils and Lignin-Derived Phenols
,”
Ind. Eng. Chem. Res.
,
58
(
10
), pp.
4317
4330
.
44.
Spikes
,
H.
,
2015
, “
Friction Modifier Additives
,”
Tribol. Lett.
,
60
(
1
), pp.
1
26
.
45.
Ewen
,
J. P.
,
Gattinoni
,
C.
,
Morgan
,
N.
,
Spikes
,
H. A.
, and
Dini
,
D.
,
2016
, “
Nonequilibrium Molecular Dynamics Simulations of Organic Friction Modifiers Adsorbed on Iron Oxide Surfaces
,”
Langmuir
,
32
(
18
), pp.
4450
4463
.
46.
Faig
,
J. J.
,
Zhang
,
Y.
,
Ng
,
M. K.
,
Luo
,
S.
,
Shough
,
A. M.
,
Schilowitz
,
A.
,
Dierolf
,
M.
, and
Uhrich
,
K. E.
,
2018
, “
Thermocleavable Friction Modifiers for Controlled Release in Lubricants
,”
Tribol. Int.
,
120
, pp.
58
69
.
47.
Campen
,
S.
,
Green
,
J. H.
,
Lamb
,
G. D.
, and
Spikes
,
H. A.
,
2015
, “
In Situ Study of Model Organic Friction Modifiers Using Liquid Cell AFM; Saturated and Mono-Unsaturated Carboxylic Acids
,”
Tribol. Lett.
,
57
(
2
), pp.
1
20
.
48.
Riposan
,
A.
,
Li
,
Y.
,
Tan
,
Y. H.
,
Galli
,
G.
, and
Liu
,
G. Y.
,
2007
, “
Structural Characterization of Aldehyde-Terminated Self-Assembled Monolayers
,”
J. Phys. Chem. A
,
111
(
49
), pp.
12727
12739
.
49.
Loehle
,
S.
,
Matta
,
C.
,
Minfray
,
C.
,
Le Mogne
,
T.
,
Martin
,
J. M.
,
Iovine
,
R.
,
Obara
,
Y.
,
Miura
,
R.
, and
Miyamoto
,
A.
,
2014
, “
Mixed Lubrication With C18 Fatty Acids: Effect of Unsaturation
,”
Tribol. Lett.
,
53
(
1
), pp.
319
328
.
50.
McCormick
,
R. L.
,
Alvarez
,
J. R.
,
Graboski
,
M. S.
,
Tyson
,
K. S.
, and
Vertin
,
K.
,
2002
, “
Fuel Additive and Blending Approaches to Reducing NOx Emissions From Biodiesel
,” SAE Technical Paper No. 2002-01-1658, pp.
3
12
.
51.
Sharma
,
B. K.
,
Doll
,
K. M.
, and
Erhan
,
S. Z.
,
2008
, “
Ester Hydroxy Derivatives of Methyl Oleate: Tribological, Oxidation and Low Temperature Properties
,”
Bioresour. Technol.
,
99
(
15
), pp.
7333
7340
.
52.
Hamdan
,
S. H.
,
Chong
,
W. W. F.
,
Ng
,
J. H.
,
Ghazali
,
M. J.
, and
Wood
,
R. J. K.
,
2017
, “
Influence of Fatty Acid Methyl Ester Composition on Tribological Properties of Vegetable Oils and Duck Fat Derived Biodiesel
,”
Tribol. Int.
,
113
, pp.
76
82
.
53.
Knothe
,
G.
,
2005
, “
Dependence of Biodiesel Fuel Properties on the Structure of Fatty Acid Alkyl Esters
,”
Fuel Process. Technol.
,
86
(
10
), pp.
1059
1070
.
54.
Geller
,
D. P.
, and
Goodrum
,
J. W.
,
2004
, “
Effects of Specific Fatty Acid Methyl Esters on Diesel Fuel Lubricity
,”
Fuel
,
83
(
17–18
), pp.
2351
2356
.
55.
Goodrum
,
J. W.
, and
Geller
,
D. P.
,
2005
, “
Influence of Fatty Acid Methyl Esters From Hydroxylated Vegetable Oils on Diesel Fuel Lubricity
,”
Bioresour. Technol.
,
96
(
7
), pp.
851
855
.
56.
Knothe
,
G.
,
2008
, “
‘Designer’ Biodiesel: Optimizing Fatty Ester Composition to Improve Fuel Properties
,”
Energy Fuels
,
22
(
2
), pp.
1358
1364
.
57.
Canoira
,
L.
,
García Galeán
,
J.
,
Alcántara
,
R.
,
Lapuerta
,
M.
, and
García-Contreras
,
R.
,
2010
, “
Fatty Acid Methyl Esters (FAMEs) From Castor Oil: Production Process Assessment and Synergistic Effects in Its Properties
,”
Renew. Energy
,
35
(
1
), pp.
208
217
.
58.
Drown
,
D. C.
,
Harper
,
K.
, and
Frame
,
E.
,
2001
, “
Screening Vegetable Oil Alcohol Esters as Fuel Lubricity Enhancers
,”
J. Am. Oil Chem. Soc.
,
78
(
6
), pp.
579
584
.
59.
Bhuyan
,
S.
,
Sundararajan
,
S.
,
Yao
,
L.
,
Hammond
,
E. G.
, and
Wang
,
T.
,
2006
, “
Boundary Lubrication Properties of Lipid-Based Compounds Evaluated Using Microtribological Methods
,”
Tribol. Lett.
,
22
(
2
), pp.
167
172
.
60.
Wadumesthrige
,
K.
,
Ara
,
M.
,
Salley
,
S. O.
, and
Ng
,
K. Y. S.
,
2009
, “
Investigation of Lubricity Characteristics of Biodiesel in Petroleum and Synthetic Fuel
,”
Energy Fuels
,
23
(
4
), pp.
2229
2234
.
61.
Bhatnagar
,
A. K.
,
Kaul
,
S.
,
Chhibber
,
V. K.
, and
Gupta
,
A. K.
,
2006
, “
HFRR Studies on Methyl Esters of Nonedible Vegetable Oils
,”
Energy Fuels
,
20
(
3
), pp.
1341
1344
.
62.
Matzke
,
M.
,
Litzow
,
U.
,
Jess
,
A.
,
Caprotti
,
R.
, and
Balfour
,
G.
,
2009
, “
Diesel Lubricity Requirements of Future Fuel Injection Equipment Markus Matzke and Ulrike Litzow Rinaldo Caprotti and Graham Balfour
,”
SAE Int. J. Fuels Lubr.
,
2
(
1
), pp.
273
286
.
63.
Lapuerta
,
M.
,
Sánchez-Valdepeñas
,
J.
,
Bolonio
,
D.
, and
Sukjit
,
E.
,
2016
, “
Effect of Fatty Acid Composition of Methyl and Ethyl Esters on the Lubricity at Different Humidities
,”
Fuel
,
184
, pp.
202
210
.
64.
Prasad
,
L.
,
Das
,
L. M.
, and
Naik
,
S. N.
,
2012
, “
Effect of Castor Oil, Methyl and Ethyl Esters as Lubricity Enhancer for Low Lubricity Diesel Fuel (LLDF)
,”
Energy Fuels
,
26
(
8
), pp.
5307
5315
.
65.
Issariyakul
,
T.
,
Dalai
,
A. K.
, and
Desai
,
P.
,
2011
, “
Evaluating Esters Derived From Mustard Oil (Sinapis alba) as Potential Diesel Additives
,”
J. Am. Oil Chem. Soc.
,
88
(
3
), pp.
391
402
.
66.
Anastopoulos
,
G.
,
Lois
,
E.
,
Zannikos
,
F.
,
Kalligeros
,
S.
, and
Teas
,
C.
,
2001
, “
Influence of Aceto Acetic Esters and Di-Carboxylic Acid Esters on Diesel Fuel Lubricity
,”
Tribol. Int.
,
34
(
11
), pp.
749
755
.
67.
Knothe
,
G.
, and
Steidley
,
K. R.
,
2005
, “
Lubricity of Components of Biodiesel and Petrodiesel. The Origin of Biodiesel Lubricity
,”
Energy Fuels
,
19
(
3
), pp.
1192
1200
.
68.
Calero
,
J.
,
Luna
,
D.
,
Sancho
,
E. D.
,
Luna
,
C.
,
Bautista
,
F. M.
,
Romero
,
A. A.
,
Posadillo
,
A.
, and
Verdugo
,
C.
,
2014
, “
Development of a New Biodiesel That Integrates Glycerol, by Using CaO as Heterogeneous Catalyst, in the Partial Methanolysis of Sunflower Oil
,”
Fuel
,
122
(
1
), pp.
94
102
.
69.
Calero
,
J.
,
Cumplido
,
G.
,
Luna
,
D.
,
Sancho
,
E. D.
,
Luna
,
C.
,
Posadillo
,
A.
,
Bautista
,
F. M.
,
Romero
,
A. A.
, and
Verdugo-Escamilla
,
C.
,
2014
, “
Production of a Biofuel That Keeps the Glycerol as a Monoglyceride by Using Supported KF as Heterogeneous Catalyst
,”
Energies
,
7
(
6
), pp.
3764
3780
.
70.
Hu
,
J.
,
Du
,
Z.
,
Li
,
C.
, and
Min
,
E.
,
2005
, “
Study on the Lubrication Properties of Biodiesel as Fuel Lubricity Enhancers
,”
Fuel
,
84
(
12–13
), pp.
1601
1606
.
71.
Crockett
,
R. M.
,
Derendinger
,
M. P.
,
Hug
,
P. L.
, and
Roos
,
S.
,
2004
, “
Wear and Electrical Resistance on Diesel Lubricated Surfaces Undergoing Reciprocating Sliding
,”
Tribol. Lett.
,
16
(
3
), pp.
187
194
.
72.
Choo
,
Y. M.
,
Cheng
,
S. F.
,
Ma
,
A. N.
, and
Ba
,
Y.
,
2009
, “
Fuel Lubricity Additive
,” No.
2
, p.
14
.
73.
Williamson
,
W. F.
,
Landis
,
P. S.
, and
Rhodes
,
B. N.
,
2001
, “
Fuel Lubricity Additives
,” Patent No. WO 99/61563, pp.
1
16
.
74.
Hughes
,
J. M.
,
Mushrush
,
G. W.
, and
Hardy
,
D. R.
,
2002
, “
Lubricity-Enhancing Properties of Soy Oil When Used as a Blending Stock for Middle Distillate Fuels
,”
Ind. Eng. Chem. Res.
,
41
(
5
), pp.
1386
1388
.
75.
Dmytryshyn
,
S. L.
,
Dalai
,
A. K.
,
Chaudhari
,
S. T.
,
Mishra
,
H. K.
, and
Reaney
,
M. J.
,
2004
, “
Synthesis and Characterization of Vegetable Oil Derived Esters: Evaluation for Their Diesel Additive Properties
,”
Bioresour. Technol.
,
92
(
1
), pp.
55
64
.
76.
Anastopoulos
,
G.
,
Lois
,
E.
,
Karonis
,
D.
,
Kalligeros
,
S.
, and
Zannikos
,
F.
,
2005
, “
Impact of Oxygen and Nitrogen Compounds on the Lubrication Properties of Low Sulfur Diesel Fuels
,”
Energy
,
30
(
2–5
), pp.
415
426
.
77.
Nachid
,
M.
,
Ouanji
,
F.
,
Kacimi
,
M.
,
Liotta
,
L. F.
, and
Ziyad
,
M.
,
2015
, “
Biodiesel From Moroccan Waste Frying Oil: The Optimization of Transesterification Parameters Impact of Biodiesel on the Petrodiesel Lubricity and Combustion
,”
Int. J. Green Energy
,
12
(
8
), pp.
865
872
.
78.
Das
,
M.
,
Sarkar
,
M.
,
Datta
,
A.
, and
Santra
,
A. K.
,
2018
, “
Study on Viscosity and Surface Tension Properties of Biodiesel-Diesel Blends and Their Effects on Spray Parameters for CI Engines
,”
Fuel
,
220
, pp.
769
779
.
79.
Suppes
,
G. J.
,
Goff
,
M.
,
Burkhart
,
M. L.
,
Bockwinkel
,
K.
,
Mason
,
M. H.
,
Botts
,
J. B.
, and
Heppert
,
J. A.
,
2001
, “
Multifunctional Diesel Fuel Additives From Triglycérides
,”
Energy Fuels
,
15
(
1
), pp.
151
157
.
80.
Suppes
,
G. J.
, and
Dasari
,
M. A.
,
2003
, “
Synthesis and Evaluation of Alkyl Nitrates From Triglycerides as Cetane Improvers
,”
Ind. Eng. Chem. Res.
,
42
(
21
), pp.
5042
5053
.
81.
Liu
,
Z.
,
Li
,
J.
,
Knothe
,
G.
,
Sharma
,
B. K.
, and
Jiang
,
J.
,
2019
, “
Improvement of Diesel Lubricity by Chemically Modified Tung Oil-Based Fatty Acid Esters as Additives
,”
33
(
6
), pp.
5110
5115
.
82.
Viintin
,
J.
,
Arnek
,
A.
, and
Ploj
,
T.
,
2000
, “
Lubricating Properties of Rapeseed Oils Compared to Mineral Oils Under a High Load Oscillating Movement
,”
J. Synth. Lubr.
,
17
(
3
), pp.
201
217
.
83.
Mancini
,
A.
,
Imperlini
,
E.
,
Nigro
,
E.
,
Montagnese
,
C.
,
Daniele
,
A.
,
Orrù
,
S.
, and
Buono
,
P.
,
2015
, “
Biological and Nutritional Properties of Palm Oil and Palmitic Acid: Effects on Health
,”
Molecules
,
20
(
9
), pp.
17339
17361
.
84.
Sootchiewcharn
,
N.
,
Attanatho
,
L.
, and
Reubroycharoen
,
P.
,
2015
, “
Biodiesel Production From Refined Palm Oil Using Supercritical Ethyl Acetate in a Microreactor
,”
Energy Procedia
,
79
, pp.
697
703
.
85.
Singh
,
Y.
,
Farooq
,
A.
,
Raza
,
A.
,
Mahmood
,
M. A.
, and
Jain
,
S.
,
2017
, “
Sustainability of a Non-Edible Vegetable Oil Based Bio-Lubricant for Automotive Applications: A Review
,”
Process Saf. Environ. Protect.
,
111
, pp.
701
713
.
86.
Srivastava
,
A.
, and
Prasad
,
R.
,
2000
, “
Triglycerides-Based Diesel Fuels
,”
Renew. Sustain. Energy Rev.
,
4
(
2
), pp.
111
133
.
87.
Anastopoulos
,
G.
,
Schinas
,
P.
,
Zannikou
,
Y.
,
Karonis
,
D.
,
Zannikos
,
F.
, and
Lois
,
E.
,
2018
, “
Investigation of the Effectiveness of Monoethanolamides as Low Sulfur Marine Fuel Lubricity Additives
,”
Mater. Today: Proc.
,
5
(
4
), pp.
27563
27571
.
88.
Kousaalya
,
A. B.
,
Beyene
,
S. D.
,
Ayalew
,
B.
, and
Pilla
,
S.
,
2019
, “
Epoxidation Kinetics of High-Linolenic Triglyceride Catalyzed by Solid Acidic-Ion Exchange Resin
,”
Sci. Rep.
,
9
(
1
), pp.
1
12
.
89.
Borugadda
,
V. B.
, and
Goud
,
V. V.
,
2019
, “
Hydroxylation and Hexanoylation of Epoxidized Waste Cooking Oil and Epoxidized Waste Cooking Oil Methyl Esters: Process Optimization and Physico-Chemical Characterization
,”
Ind. Crops Prod.
,
133
, pp.
151
159
.
90.
Guzatto
,
R.
,
Defferrari
,
D.
,
Reiznautt
,
Q. B.
,
Cadore
,
Í. R.
, and
Samios
,
D.
,
2012
, “
Transesterification Double Step Process Modification for Ethyl Ester Biodiesel Production From Vegetable and Waste Oils
,”
Fuel
,
92
(
1
), pp.
197
203
.
91.
Minami
,
I.
,
Hong
,
H. S.
, and
Mathur
,
N. C.
,
1999
, “
Lubrication Performance of Model Organic Compounds in High Oleic Sunflower Oil
,”
J. Synth. Lubr.
,
16
(
1
), pp.
1
12
.
92.
Fox
,
N. J.
,
Tyrer
,
B.
, and
Stachowiak
,
G. W.
,
2004
, “
Boundary Lubrication Performance of Free Fatty Acids in Sunflower Oil
,”
Tribol. Lett.
,
16
(
4
), pp.
275
281
.
93.
Hui
,
L.
,
Weiyu
,
F.
,
Yang
,
L.
,
Pinhui
,
Z.
, and
Guozhi
,
N.
,
2013
, “
Effects of Fatty Acids on Low-Sulfur Diesel Lubricity: Experimental Investigation, DFT Calculation and MD Simulation
,”
China Pet. Process. Petrochem. Technol.
,
15
(
2
), pp.
74
81
.
94.
Martin
,
J. M.
,
Matta
,
C.
,
Bouchet
,
M. I. D. B.
,
Forest
,
C.
,
Le Mogne
,
T.
,
Dubois
,
T.
, and
Mazarin
,
M.
,
2013
, “
Mechanism of Friction Reduction of Unsaturated Fatty Acids as Additives in Diesel Fuels
,”
Friction
,
1
(
3
), pp.
252
258
.
95.
De Barros Bouchet
,
M. I.
,
Martin
,
J. M.
,
Forest
,
C.
,
Le Mogne
,
T.
,
Mazarin
,
M.
,
Avila
,
J.
,
Asensio
,
M. C.
, and
Fisher
,
G. L.
,
2017
, “
Tribochemistry of Unsaturated Fatty Acids as Friction Modifiers in (Bio)Diesel Fuel
,”
RSC Adv.
,
7
(
53
), pp.
33120
33131
.
96.
Kuwahara
,
T.
,
Romero
,
P. A.
,
Makowski
,
S.
,
Weihnacht
,
V.
,
Moras
,
G.
, and
Moseler
,
M.
,
2019
, “
Mechano-Chemical Decomposition of Organic Friction Modifiers With Multiple Reactive Centres Induces Superlubricity of Ta-C
,”
Nat. Commun.
,
10
(
1
), pp.
1
11
.
97.
Wood
,
M. H.
,
Casford
,
M. T.
,
Steitz
,
R.
,
Zarbakhsh
,
A.
,
Welbourn
,
R. J. L.
, and
Clarke
,
S. M.
,
2016
, “
Comparative Adsorption of Saturated and Unsaturated Fatty Acids at the Iron Oxide/Oil Interface
,”
Langmuir
,
32
(
2
), pp.
534
540
.
98.
Crespo
,
A.
,
Morgado
,
N.
,
Mazuyer
,
D.
, and
Cayer-Barrioz
,
J.
,
2018
, “
Effect of Unsaturation on the Adsorption and the Mechanical Behavior of Fatty Acid Layers
,”
Langmuir
,
34
(
15
), pp.
4560
4567
.
99.
Lacey
,
P.
, and
Westbrook
,
S.
,
1997
, “
Fuel Lubricity Additive Evaluation
,” INTERIM Rep. TFLRF No. 323, pp.
1
24
.
100.
Kajdas
,
C.
, and
Majzner
,
M.
,
2001
, “
Boundary Lubrication of Low-Sulphur Diesel Fuel in the Presence of Fatty Acids
,”
Lubr. Sci.
,
14
(
1
), pp.
83
108
.
101.
Fukumoto
,
M.
,
Oguma
,
M.
, and
Goto
,
S.
,
2003
, “
Experimental Investigation of Lubricity Improvement of Gas-to-Liquid (GTL) Fuels With Additives for Low Sulphur Diesel Fuel
,” SAE Technical Paper No. 2003-01-1948, pp.
1
5
.
102.
Brewer
,
M.
,
Kautto
,
T.
, and
Ravaska
,
M.
,
2005
, “
Fatty Acid Composition, Its Production and Use
,” Patent No. US 2005O268530A1, pp.
1
7
.
103.
Sarin
,
R.
,
Arora
,
A. K.
,
Ranjan
,
R.
,
Gupta
,
A. A.
, and
Malhotra
,
R. K.
,
2007
, “
Bio-Diesel Lubricity: Correlation Study With Residual Acidity
,”
Lubr. Sci.
,
19
(
2
), pp.
151
157
.
104.
Singh
,
D.
,
Sharma
,
D.
,
Soni
,
S. L.
,
Sharma
,
S.
, and
Kumari
,
D.
,
2019
, “
Chemical Compositions, Properties, and Standards for Different Generation Biodiesels: A Review
,”
Fuel
,
253
, pp.
60
71
.
105.
Folayan
,
A. J.
,
Anawe
,
P. A. L.
,
Aladejare
,
A. E.
, and
Ayeni
,
A. O.
,
2019
, “
Experimental Investigation of the Effect of Fatty Acids Configuration, Chain Length, Branching and Degree of Unsaturation on Biodiesel Fuel Properties Obtained From Lauric Oils, High-Oleic and High-Linoleic Vegetable Oil Biomass
,”
Energy Rep.
,
5
, pp.
793
806
.
106.
Cyriac
,
F.
,
Yamashita
,
N.
,
Hirayama
,
T.
,
Yi
,
T. X.
,
Poornachary
,
S. K.
, and
Chow
,
P. S.
,
2021
, “
Mechanistic Insights Into the Effect of Structural Factors on Film Formation and Tribological Performance of Organic Friction Modifiers
,”
Tribol. Int.
,
164
, p.
107243
.
107.
Zuleta
,
E. C.
,
Baena
,
L.
,
Rios
,
L. A.
, and
Calderón
,
J. A.
,
2012
, “
The Oxidative Stability of Biodiesel and Its Impact on the Deterioration of Metallic and Polymeric Materials: A Review
,”
J. Braz. Chem. Soc.
,
23
(
12
), pp.
2159
2175
.
108.
Liu
,
Z.
,
Li
,
F.
,
Shen
,
J.
, and
Wang
,
H.
,
2019
, “
Effect of Oxidation of Jatropha Curcas-Derived Biodiesel on Its Lubricating Properties
,”
Energy Sustain. Dev.
,
52
, pp.
33
39
.
109.
Sukjit
,
E.
,
Tongroon
,
M.
,
Chollacoop
,
N.
,
Yoshimura
,
Y.
,
Poapongsakorn
,
P.
,
Lapuerta
,
M.
, and
Dearn
,
K. D.
,
2019
, “
Improvement of the Tribological Behaviour of Palm Biodiesel Via Partial Hydrogenation of Unsaturated Fatty Acid Methyl Esters
,”
Wear
,
426–427
(
12
), pp.
813
818
.
110.
De Barros Bouchet
,
M. I.
,
Martin
,
J. M.
,
Avila
,
J.
,
Kano
,
M.
,
Yoshida
,
K.
,
Tsuruda
,
T.
,
Bai
,
S.
, et al
,
2017
, “
Diamond-Like Carbon Coating Under Oleic Acid Lubrication: Evidence for Graphene Oxide Formation in Superlow Friction
,”
Sci. Rep.
,
7
(
46394
), pp.
1
13
.
111.
Jia
,
Y.
,
Wan
,
H.
,
Chen
,
L.
,
Zhou
,
H.
, and
Chen
,
J.
,
2017
, “
Effects of Phosphate Binder on the Lubricity and Wear Resistance of Graphite Coating at Elevated Temperatures
,”
Surf. Coat. Technol.
,
315
, pp.
490
497
.
112.
Hong
,
F. T.
,
Alghamdi
,
N. M.
,
Bailey
,
A. S.
,
Khawajah
,
A.
, and
Sarathy
,
S. M.
,
2020
, “
Chemical and Kinetic Insights Into Fuel Lubricity Loss of Low-Sulfur Diesel Upon the Addition of Multiple Oxygenated Compounds
,”
Tribol. Int.
,
152
, p.
106559
.
113.
Singh
,
Y.
, and
Negi
,
P.
,
2021
, “
Friction and Wear Characteristics of Chemically Modified Garcinia Indica at Different Loads
,”
Mater. Today: Proc.
,
46
(
20
), pp.
10530
10532
.
114.
Chong
,
W. W. F.
, and
Ng
,
J. H.
,
2016
, “
An Atomic-Scale Approach for Biodiesel Boundary Lubricity Characterisation
,”
Int. Biodeterior. Biodegrad.
,
113
, pp.
34
43
.
115.
Mosarof
,
M. H.
,
Kalam
,
M. A.
,
Masjuki
,
H. H.
,
Alabdulkarem
,
A.
,
Habibullah
,
M.
,
Arslan
,
A.
, and
Monirul
,
I. M.
,
2016
, “
Assessment of Friction and Wear Characteristics of Calophyllum inophyllum and Palm Biodiesel
,”
Ind. Crops Prod.
,
83
, pp.
470
483
.
116.
Fazal
,
M. A.
,
Haseeb
,
A. S. M. A.
, and
Masjuki
,
H. H.
,
2013
, “
Investigation of Friction and Wear Characteristics of Palm Biodiesel
,”
Energy Convers. Manage.
,
67
, pp.
251
256
.
117.
Awang
,
M. S. N.
,
Zulkifli
,
N. W. M.
,
Abbas
,
M. M.
,
Zulkifli
,
S. A.
,
Kalam
,
A.
,
Ahmad
,
M. H.
,
Yusoff
,
M. N. A. M.
,
Mazlan
,
M.
, and
Daud
,
W. M. A. W.
,
2021
, “
Effect of Addition of Palm Oil Biodiesel in Waste Plastic Oil on Diesel Engine Performance, Emission, and Lubricity
,”
ACS Omega
,
6
(
33
), pp.
21655
21675
.
118.
Jayadas
,
N.
,
Nair
,
K. P.
, and
Ajithkumar
,
G.
,
2007
, “
Tribological Evaluation of Coconut Oil as an Environment-Friendly Lubricant
,”
Tribiol. Int.
,
40
, pp.
350
354
.
119.
Yazawa
,
S.
,
Minami
,
I.
, and
Prakash
,
B.
,
2014
, “
Reducing Friction and Wear of Tribological Systems Through Hybrid Tribofilm Consisting of Coating and Lubricants
,”
Lubricants
,
2
(
2
), pp.
90
112
.
120.
Xiao
,
H.
,
Zou
,
H.
,
Liu
,
S.
, and
Li
,
C.
,
2019
, “
An Investigation of the Friction and Wear Behavior of Soybean Biodiesel
,”
Tribol. Int.
,
131
, pp.
377
385
.
121.
Kumar
,
N.
,
2017
, “
Oxidative Stability of Biodiesel: Causes, Effects and Prevention
,”
Fuel
,
190
, pp.
328
350
.
122.
Karmakar
,
G.
,
Ghosh
,
P.
, and
Sharma
,
B. K.
,
2017
, “
Chemically Modifying Vegetable Oils to Prepare Green Lubricants
,”
Lubricants
,
5
(
4
), pp.
1
17
.
123.
Yuan
,
L.
,
Wang
,
Z.
,
Trenor
,
N. M.
, and
Tang
,
C.
,
2015
, “
Robust Amidation Transformation of Plant Oils Into Fatty Derivatives for Sustainable Monomers and Polymers
,”
Macromolecules
,
48
(
5
), pp.
1320
1328
.
124.
Gentry
,
D.
,
Stehlin
,
M. P.
, and
Weers
,
J. J.
,
1999
, “
Fatty Acid Amide Lubricity Aids and Related Methods for Improvement of Lubricity of Fuels
,” Patent No. WO 99/00467, pp.
1
21
.
125.
Anastopoulos
,
G.
,
Kaligeros
,
S.
,
Schinas
,
P.
,
Zannikou
,
Y.
,
Karonis
,
D.
, and
Zannikos
,
F.
,
2017
, “
The Impact of Fatty Acid Diisopropanolamides on Marine Gas Oil Lubricity
,”
Lubricants
,
5
(
3
), pp.
1
12
.
126.
Zinina
,
N. D.
,
Timashova
,
A. L.
,
Pavlovskaya
,
M. V.
, and
Grishin
,
D. F.
,
2014
, “
An Antiwear Additive for Ultra-Low-Sulfur Diesel Fuel
,”
Pet. Chem.
,
54
(
5
), pp.
392
396
.
127.
Kulkarni
,
M. G.
,
Dalai
,
A. K.
, and
Bakhshi
,
N. N.
,
2007
, “
Transesterification of Canola Oil in Mixed Methanol/Ethanol System and Use of Esters as Lubricity Additive
,”
Bioresour. Technol.
,
98
(
10
), pp.
2027
2033
.
128.
Lapuerta
,
M.
,
García-Contreras
,
R.
, and
Agudelo
,
J. R.
,
2010
, “
Lubricity of Ethanol-Biodiesel-Diesel Fuel Blends
,”
Energy Fuels
,
24
(
2
), pp.
1374
1379
.
129.
Sukjit
,
E.
,
Herreros
,
J. M.
,
Piaszyk
,
J.
,
Dearn
,
K. D.
, and
Tsolakis
,
A.
,
2013
, “
Finding Synergies in Fuels Properties for the Design of Renewable Fuels-Hydroxylated Biodiesel Effects on Butanol-Diesel Blends
,”
Environ. Sci. Technol.
,
47
(
7
), pp.
3535
3542
.
130.
Ossia
,
C. V.
,
Han
,
H. G.
, and
Kong
,
H.
,
2008
, “
Additive Properties of Saturated Very Long Chain Fatty Acids in Castor and Jojoba Oils
,”
J. Mech. Sci. Technol.
,
22
(
8
), pp.
1527
1536
.
131.
Konwar
,
L. J.
,
Mikkola
,
J. P.
,
Bordoloi
,
N.
,
Saikia
,
R.
,
Chutia
,
R. S.
, and
Kataki
,
R.
,
2018
, “Sidestreams From Bioenergy and Biorefinery Complexes as a Resource for Circular Bioeconomy,”
Waste Biorefinery Potential Perspect
,
T.
Bhaskar
,
A.
Pandey
,
S. V.
Mohan
,
D.-J.
Lee
, and
S. K.
Khanal
, eds.,
Elsevier
,
Amsterdam
, pp.
85
125
.
132.
Kajdas
,
C.
, and
Majzner
,
M.
,
2001
, “
The Influence of Fatty Acids and Fatty Acids Mixtures on the Lubricity of Low-Sulfur Diesel Fuels
,” SAE Technical Paper No. 2001-01-1929, pp.
1
21
.
133.
Jahanmir
,
S.
,
1985
, “
Chain Length Effects in Boundary Lubrication
,”
Wear
,
102
(
4
), pp.
331
349
.
134.
Rodríguez-Fernández
,
J.
,
Ramos
,
A.
,
Sánchez-Valdepeñas
,
J.
, and
Serrano
,
J. R.
,
2019
, “
Lubricity of Paraffinic Fuels Additivated With Conventional and Non-Conventional Methyl Esters
,”
Adv. Mech. Eng.
,
11
(
9
), pp.
1
8
.
135.
Jamshaid
,
M.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Zulkifli
,
N. W. M.
,
Arslan
,
A.
,
Alwi
,
A.
,
Khuong
,
L. S.
,
Alabdulkarem
,
A.
, and
Syahir
,
A. Z.
,
2019
, “
Production Optimization and Tribological Characteristics of Cottonseed Oil Methyl Ester
,”
J. Cleaner Prod.
,
209
, pp.
62
73
.
136.
Muñoz
,
M.
,
Moreno
,
F.
,
Monné
,
C.
,
Morea
,
J.
, and
Terradillos
,
J.
,
2011
, “
Biodiesel Improves Lubricity of New Low Sulphur Diesel Fuels
,”
Renew. Energy
,
36
(
11
), pp.
2918
2924
.
137.
Furey
,
M. J.
,
Heights
,
B.
, and
Appel
,
J. K.
,
1966
, “
Lubricity Additive-Hydrogenated Di-Carboxylic Acid and a Glycol
,” Patent No. 3,287,273, pp.
3
8
.
138.
Karonis
,
D.
,
Anastopoulos
,
G.
,
Lois
,
E.
,
Stournas
,
S.
,
Zannikos
,
F.
, and
Serdari
,
A.
,
1999
, “
Assessment of the Lubricity of Greek Road Diesel and the Effect of the Addition of Specific Types of Biodiesel
,” SAE Technical Paper, 1999-01-1471.
139.
Wain
,
K. S.
,
Perez
,
J. M.
,
Chapman
,
E.
, and
Boehman
,
A. L.
,
2005
, “
Alternative and Low Sulfur Fuel Options: Boundary Lubrication Performance and Potential Problems
,”
Tribol. Int.
,
38
(
3
), pp.
313
319
.
140.
Oğuz
,
H.
,
Düzcükoğlu
,
H.
, and
Ekinci
,
Ş.
,
2011
, “
The Investigation of Lubrication Properties Performance of Euro-Diesel and Biodiesel
,”
Tribol. Trans.
,
54
(
3
), pp.
449
456
.
141.
Sun
,
J.
,
Zhu
,
K.
,
Gao
,
F.
,
Wang
,
C.
,
Liu
,
J.
,
Peden
,
C. H. F.
, and
Wang
,
Y.
,
2011
, “
Direct Conversion of Bio-Ethanol to Isobutene on Nanosized Zn XZryOz Mixed Oxides With Balanced Acid—Base Sites
,”
J. Am. Chem. Soc.
,
133
(
29
), pp.
11096
11099
.
142.
Kumar
,
D.
, and
Ali
,
A.
,
2015
, “
Direct Synthesis of Fatty Acid Alkanolamides and Fatty Acid Alkyl Esters From High Free Fatty Acid Containing Triglycerides as Lubricity Improvers Using Heterogeneous Catalyst
,”
Fuel
,
159
, pp.
845
853
.
143.
De Lima
,
E. C.
,
De Souza
,
C. C.
,
Soares
,
R. D. O.
,
Vaz
,
B. G.
,
Eberlin
,
M. N.
,
Dias
,
A. G.
, and
Costa
,
P. R. R.
,
2011
, “
DBU as a Catalyst for the Synthesis of Amides Via Aminolysis of Methyl Esters
,”
J. Braz. Chem. Soc.
,
22
(
11
), pp.
2186
2190
.
144.
de Oliveira
,
V. M.
,
Silva de Jesus
,
R.
,
Gomes
,
A. F.
,
Gozzo
,
F. C.
,
Umpierre
,
A. P.
,
Suarez
,
P. A. Z.
,
Rubim
,
J. C.
, and
Neto
,
B. A. D.
,
2011
, “
Catalytic Aminolysis (Amide Formation) From Esters and Carboxylic Acids: Mechanism, Enhanced Ionic Liquid Effect, and Its Origin
,”
ChemCatChem
,
3
(
12
), pp.
1911
1920
.
145.
Stournas
,
S.
,
Lois
,
E.
, and
Serdari
,
A.
,
1995
, “
Effects of Fatty Acid Derivatives on the Ignition Quality and Cold Flow of Diesel Fuel
,”
J. Am. Oil Chem. Soc.
,
72
(
4
), pp.
433
437
.
146.
Yuan
,
L.
,
Wang
,
Z.
,
Trenor
,
N. M.
, and
Tang
,
C.
,
2016
, “
Amidation of Triglycerides by Amino Alcohols and Their Impact on Plant Oil-Derived Polymers
,”
Polym. Chem.
,
7
(
16
), pp.
2790
2798
.
147.
Moser
,
B. R.
,
Cermak
,
S. C.
, and
Isbell
,
T. A.
,
2008
, “
Evaluation of Castor and Lesquerella Oil Derivatives as Additives in Biodiesel and Ultralow Sulfur Diesel Fuels
,”
Energy Fuels
,
22
(
11
), pp.
1349
1352
.
148.
Sun
,
L.
,
Li
,
M.
,
Ma
,
C.
, and
Li
,
P.
,
2017
, “
Preparation and Evaluation of Jatropha Curcas Based Catalyst and Functionalized Blend Components for Low Sulfur Diesel Fuel
,”
Fuel
,
206
, pp.
27
33
.
149.
Peng
,
D. X.
,
2015
, “
Effects of Concentration and Temperature on Tribological Properties of Biodiesel
,”
Adv. Mech. Eng.
,
7
(
11
), pp.
1
10
.
150.
Gunsel
,
S.
,
Smeeth
,
M.
, and
Spikes
,
H.
,
1996
, “
Friction and Wear Reduction by Boundary Film-Forming Viscosity Index Improvers
,” SAE Technical Paper, 962037, pp.
1
127
.
151.
Cyriac
,
F.
,
Yi
,
T. X.
,
Poornachary
,
S. K.
, and
Chow
,
P. S.
,
2022
, “
Boundary Lubrication Performance of Polymeric and Organic Friction Modifiers in the Presence of an Anti-Wear Additive
,”
Tribol. Int.
,
165
, p.
107256
.
152.
Montero De Espinosa
,
L.
, and
Meier
,
M. A. R.
,
2011
, “
Plant Oils: The Perfect Renewable Resource for Polymer Science?!
,”
Eur. Polym. J.
,
47
(
5
), pp.
837
852
.
153.
Tohyama
,
M.
,
Ohmori
,
T.
,
Murase
,
A.
, and
Masuko
,
M.
,
2009
, “
Friction Reducing Effect of Multiply Adsorptive Organic Polymer
,”
Tribol. Int.
,
42
(
6
), pp.
926
933
.
154.
Lomège
,
J.
,
Mohring
,
V.
,
Lapinte
,
V.
,
Negrell
,
C.
, and
Robin
,
J.
,
2018
, “
Synthesis of Plant Oil-Based Amide Copolymethacrylates and Their Use as Viscosity Index Improvers
,”
Eur. Polym. J.
,
109
, pp.
435
446
.
155.
Kossoko
,
N. F.
,
Thi
,
B.
,
Belin
,
M.
, and
Minfray
,
C.
,
2021
, “
Diblock Polymeric Friction Modifier (PFM) in the Boundary Regime: Tribological Conditions Leading to Low Friction
,”
Tribol. Int.
,
163
, p.
107186
.
156.
Sukjit
,
E.
, and
Dearn
,
K. D.
,
2011
, “
Enhancing the Lubricity of an Environmentally Friendly Swedish Diesel Fuel MK1
,”
Wear
,
271
(
9–10
), pp.
1772
1777
.
157.
Del Río
,
J. M. L.
,
López
,
E. R.
,
Gómez
,
M. G.
,
Vilar
,
S. Y.
,
Piñeiro
,
Y.
,
Rivas
,
J.
,
Gonçalves
,
D. E. P.
,
Seabra
,
J. H. O.
, and
Fernández
,
J.
,
2020
, “
Tribological Behavior of Nanolubricants Based on Coated Magnetic Nanoparticles and Trimethylolpropane Trioleate Base Oil
,”
Nanomaterials
,
10
(
4
), pp.
1
22
.
158.
Ji
,
M.
,
Liu
,
S.
, and
Xiao
,
H.
,
2018
, “
Impacts of Glyceride Additive on Tribological Properties of Water-Based Drilling Mud for Steel–Steel Contact
,”
Tribol. Lett.
,
66
(
4
), pp.
1
11
.
159.
Vrahopoulou
,
E.
,
Schlosberg
,
R.
, and
Turner
,
D.
,
1998
, “
Polyol Ester Distillate Fuels Additive
,” No.
19
, pp.
1
6
.
160.
Onumata
,
Y.
,
Zhao
,
H.
,
Wang
,
C.
,
Morina
,
A.
, and
Neville
,
A.
,
2018
, “
Interactive Effect Between Organic Friction Modifiers and Additives on Friction at Metal Pushing V-Belt CVT Components
,”
Tribol. Trans.
,
61
(
3
), pp.
474
481
.
161.
Sun
,
L.
,
Li
,
M.
,
Ma
,
X.
,
Ma
,
Z.
,
Ma
,
C.
, and
Li
,
P.
,
2019
, “
Study on Obtaining High Performance Diesel/Biodiesel Fuel by Using Heterogeneous Catalysts
,”
Pet. Sci. Technol.
,
37
(
12
), pp.
1471
1477
.
162.
Knothe
,
G.
,
2005
, “
The Lubricity of Biodiesel
,” SAE Technical Paper No. 2005-01-3672, pp.
1
17
.
163.
Bilal
,
S.
,
Nuhu
,
M.
, and
Kasim
,
S. A.
,
2013
, “
Production of Biolubricant From Jatropha Curcas Seed Oil
,”
J. Chem. Eng. Mater. Sci.
,
4
(
6
), pp.
72
79
.
164.
Attia
,
N. K.
,
El-Mekkawi
,
S. A.
,
Elardy
,
O. A.
, and
Abdelkader
,
E. A.
,
2020
, “
Chemical and Rheological Assessment of Produced Biolubricants From Different Vegetable Oils
,”
Fuel
,
271
, p.
117578
.
165.
Sanni
,
S. E.
,
Emetere
,
M. E.
,
Efeovbokhan
,
V. E.
, and
Udonne
,
J. D.
,
2017
, “
Process Optimization of the Transesterification Processes of Palm Kernel and Soybean Oils for Lube Oil Synthesis
,”
Int. J. Appl. Eng. Res.
,
12
(
14
), pp.
4113
4129
.
166.
Costa
,
K. P.
,
Do Valle
,
S. F.
,
Dos Santos
,
T. F. L.
,
Rangel
,
E. T.
,
Pinto
,
A. C.
,
Suarez
,
P. A. Z.
, and
Rezende
,
M. J. C.
,
2018
, “
Synthesis and Evaluation of Biocide and Cetane Number Improver Additives for Biodiesel From Chemical Changes in Triacylglycerides
,”
J. Braz. Chem. Soc.
,
29
(
12
), pp.
2605
2615
.
167.
Jiang
,
J.
,
Zhang
,
Y.
,
Zheng
,
Y.
, and
Jiang
,
P.
,
2013
, “
Transesterification of Soybean Oil With Ethylene Glycol, Catalyzed by Modified Li–Al Layered Double Hydroxides
,”
Chem. Eng. Technol.
,
36
(
8
), pp.
1371
1377
.
168.
Encinar
,
J. M.
,
Nogales-Delgado
,
S.
,
Sánchez
,
N.
, and
González
,
J. F.
,
2020
, “
Biolubricants From Rapeseed and Castor Oil Transesterification by Using Titanium Isopropoxide as a Catalyst: Production and Characterization
,”
Catalysts
,
10
(
4
), p.
366
.
169.
Kamalakar
,
K.
,
Rajak
,
A. K.
,
Prasad
,
R. B. N.
, and
Karuna
,
M. S. L.
,
2013
, “
Rubber Seed Oil-Based Biolubricant Base Stocks: A Potential Source for Hydraulic Oils
,”
Ind. Crops Prod.
,
51
, pp.
249
257
.
170.
Herbstman
,
S.
,
Love
,
D.
,
Petrus
,
M. P.
, and
Migdal
,
C. A.
,
1996
, “
Anti-Wear Lubricity Additive for Low-Sulfur Content Diesel Fuels
,” Patent No. US005490864A, pp.
3
6
.
171.
Harry-O’Kuru
,
R. E.
,
Mohamed
,
A.
,
Xu
,
J.
, and
Sharma
,
B. K.
,
2011
, “
Synthesis and Characterization of Corn Oil Polyhydroxy Fatty Acids Designed as Additive Agent for Many Applications
,”
J. Am. Oil Chem. Soc.
,
88
(
8
), pp.
1211
1221
.
172.
Biermann
,
U.
, and
Metzger
,
J. O.
,
2014
, “
Reduction of High Oleic Sunflower Oil to Glyceryl Trioleyl Ether
,”
Eur. J. Lipid Sci. Technol.
,
116
(
1
), pp.
74
79
.
173.
Zhang
,
J.
,
Tang
,
J. J.
, and
Zhang
,
J. X.
,
2015
, “
Polyols Prepared From Ring-Opening Epoxidized Soybean Oil by a Castor Oil-Based Fatty Diol
,”
Int. J. Polym. Sci.
,
2015
, pp.
1
8
.
174.
Rios
,
Í. C.
,
Cordeiro
,
J. P.
,
Arruda
,
T. B. M. G.
,
Rodrigues
,
F. E. A.
,
Uchoa
,
A. F. J.
,
Luna
,
F. M. T.
,
Cavalcante
,
C. L.
, and
Ricardo
,
N. M. P. S.
,
2020
, “
Chemical Modification of Castor Oil Fatty Acids (Ricinus communis) for Biolubricant Applications: An Alternative for Brazil’s Green Market
,”
Ind. Crops Prod.
,
145
, p.
112000
.
175.
Baek
,
S.-Y.
,
Kim
,
Y. W.
,
Chung
,
K.
,
Yoo
,
S. H.
,
Kim
,
N. K.
, and
Kim
,
Y. J.
,
2012
, “
Synthesis of Succinic Acid Alkyl Half-Ester Derivatives With Improved Lubricity Characteristics
,”
Ind. Eng. Chem. Res.
,
51
(
9
), pp.
3564
3568
.
176.
Hu
,
W.
,
Xu
,
Y.
,
Zeng
,
X.
, and
Li
,
J.
,
2020
, “
Alkyl-Ethylene Amines as Effective Organic Friction Modifiers for the Boundary Lubrication Regime
,”
Langmuir
,
36
(
24
), pp.
6716
6727
.
177.
Sukjit
,
E.
,
Poapongsakorn
,
P.
,
Dearn
,
K. D.
,
Lapuerta
,
M.
, and
Sánchez-Valdepeñas
,
J.
,
2017
, “
Investigation of the Lubrication Properties and Tribological Mechanisms of Oxygenated Compounds
,”
Wear
,
376–377
, pp.
836
842
.
178.
Li
,
F.
,
Liu
,
Z.
,
Ni
,
Z.
, and
Wang
,
H.
,
2019
, “
Effect of Biodiesel Components on Its Lubrication Performance
,”
J. Mater. Res. Technol.
,
8
(
5
), pp.
3681
3687
.
179.
Dodos
,
G. S.
,
Deligiannis
,
A.
,
Karonis
,
D.
, and
Zannikos
,
F.
,
2013
, “
Impact of Oxidation on Lubricating Properties of Biodiesel Blends
,”
SAE Int. J. Fuels Lubr.
,
6
(
3
), pp.
657
667
.
180.
Benjumea
,
P.
,
Agudelo
,
J. R.
, and
Agudelo
,
A. F.
,
2011
, “
Effect of the Degree of Unsaturation of Biodiesel Fuels on Engine Performance, Combustion Characteristics, and Emissions
,”
Energy Fuels
,
25
(
1
), pp.
77
85
.
181.
Gopinath
,
A.
,
Sairam
,
K.
,
Velraj
,
R.
, and
Kumaresan
,
G.
,
2015
, “
Effects of the Properties and the Structural Configurations of Fatty Acid Methyl Esters on the Properties of Biodiesel Fuel: A Review
,”
Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
,
229
(
3
), pp.
357
390
.
182.
Sharma
,
B. K.
,
Doll
,
K. M.
, and
Erhan
,
S. Z.
,
2007
, “
Oxidation, Friction Reducing, and Low Temperature Properties of Epoxy Fatty Acid Methyl Esters
,”
Green Chem.
,
9
(
5
), pp.
469
47
.
183.
Sundus
,
F.
,
Masjuki
,
H. H.
, and
Fazal
,
M. A.
,
2017
, “
Analysis of Tribological Properties of Palm Biodiesel and Oxidized Biodiesel Blends
,”
Tribol. Trans.
,
60
(
3
), pp.
530
536
.
184.
Knothe
,
G.
, and
Steidley
,
K. R.
,
2005
, “
Kinematic Viscosity of Biodiesel Fuel Components and Related Compounds. Influence of Compound Structure and Comparison to Petrodiesel Fuel Components
,”
Fuel
,
84
(
9
), pp.
1059
1065
.
185.
Derahman
,
A.
,
Abidin
,
Z. Z.
,
Cardona
,
F.
,
Biak
,
D. R. A.
,
Tahir
,
P. M.
,
Abdan
,
K.
, and
Liew
,
K. E.
,
2019
, “
Epoxidation of Jatropha Methyl Esters Via Acidic Ion Exchange Resin: Optimization and Characterization
,”
Braz. J. Chem. Eng.
,
36
(
2
), pp.
959
968
.
186.
Marques
,
J. P. C.
,
Rios
,
Í. C.
,
Arruda
,
T. B. M. G.
,
Rodrigues
,
F. E. A.
,
Uchoa
,
A. F. J.
,
De Luna
,
F. M. T.
,
Cavalcante
,
C. L.
, and
Ricardo
,
N. M. P. S.
,
2019
, “
Potential Bio-Based Lubricants Synthesized From Highly Unsaturated Soybean Fatty Acids: Physicochemical Properties and Thermal Degradation
,”
Ind. Eng. Chem. Res.
,
58
(
38
), pp.
17709
17717
.
187.
Salih
,
N.
,
Salimon
,
J.
,
Abdullah
,
B. M.
, and
Yousif
,
E.
,
2017
, “
Thermo-Oxidation, Friction-Reducing and Physicochemical Properties of Ricinoleic Acid Based-Diester Biolubricants
,”
Arabian J. Chem.
,
10
, pp.
S2273
S2280
.
188.
Adhvaryu
,
A.
, and
Erhan
,
S. Z.
,
2002
, “
Epoxidized Soybean Oil as a Potential Source of High-Temperature Lubricants
,”
Ind. Crops Prod.
,
15
(
3
), pp.
247
254
.
189.
Somidi
,
A. K. R.
,
Sharma
,
R. V.
, and
Dalai
,
A. K.
,
2014
, “
Synthesis of Epoxidized Canola Oil Using a Sulfated-SnO2 Catalyst
,”
Ind. Eng. Chem. Res.
,
53
(
49
), pp.
18668
18677
.
190.
Sharma
,
R. V.
, and
Dalai
,
A. K.
,
2013
, “
Synthesis of Bio-Lubricant From Epoxy Canola Oil Using Sulfated Ti-SBA-15 Catalyst
,”
Appl. Catal. B
,
142–143
, pp.
604
614
.
191.
Turco
,
R.
,
Tesser
,
R.
,
Vitiello
,
R.
,
Russo
,
V.
,
Andini
,
S.
, and
Di Serio
,
M.
,
2017
, “
Synthesis of Biolubricant Basestocks From Epoxidized Soybean Oil
,”
Catalysts
,
7
(
10
), p.
309
.
192.
Dunn
,
R. O.
,
Ngo
,
H. L.
, and
Haas
,
M. J.
,
2015
, “
Branched-Chain Fatty Acid Methyl Esters as Cold Flow Improvers for Biodiesel
,”
J. Am. Oil Chem. Soc.
,
92
(
6
), pp.
853
869
.
193.
Kaul
,
S.
,
Saxena
,
R. C.
,
Kumar
,
A.
,
Negi
,
M. S.
,
Bhatnagar
,
A. K.
,
Goyal
,
H. B.
, and
Gupta
,
A. K.
,
2007
, “
Corrosion Behavior of Biodiesel From Seed Oils of Indian Origin on Diesel Engine Parts
,”
Fuel Process. Technol.
,
88
(
3
), pp.
303
307
.
194.
Lim
,
Y.-K.
,
Min
,
J.
,
Yim
,
E. S.
,
Jung
,
C.-S.
,
Kim
,
J.-R.
, and
Yim
,
E. S.
,
2014
, “
Lubricity Improver
,” Patent No. USOO88356.63B2, pp.
1
8
.
195.
Dunn
,
R. O.
,
2009
, “
Cold-Flow Properties of Soybean Oil Fatty Acid Monoalkyl Ester Admixtures
,”
Energy Fuels
,
23
(
8
), pp.
4082
4091
.
196.
Wang
,
S.
,
Shen
,
J.
, and
Reaney
,
M. J. T.
,
2012
, “
Lubricity-Enhancing Low-Temperature Diesel Fuel Additives
,”
J. Am. Chem. Soc.
,
89
, pp.
513
522
.
197.
Anastopoulos
,
G.
,
Lois
,
E.
,
Zannikos
,
F.
,
Kalligeros
,
S.
, and
Teas
,
C.
,
2002
, “
HFRR Lubricity Response of an Additized Aviation Kerosene for Use in CI Engines
,”
Tribol. Int.
,
35
(
9
), pp.
599
604
.
198.
Hu
,
W.
,
Zhang
,
Z.
,
Zeng
,
X.
, and
Li
,
J.
,
2020
, “
Correlation Between the Degree of Alkylation and Tribological Properties of Amino-PEG2-Amine-Based Organic Friction Modifiers
,”
Ind. Eng. Chem. Res.
,
59
(
1
), pp.
215
225
.
199.
Lacey
,
P. I.
, and
Lestz
,
S. J.
,
2018
, “
Effect of Low-Lubricity Fuels on Diesel Injection Pumps Part II: Laboratory Evaluation
,” SAE Technical Paper No. 920824, pp.
1
11
.
200.
Voice
,
A. K.
,
Tzanetakis
,
T.
, and
Traver
,
M.
,
2017
, “
Lubricity of Light-End Fuels With Commercial Diesel Lubricity Additives
,” SAE Technical Paper No. 2017-01-08, pp.
1
10
.
201.
Bannikov
,
M. G.
,
Tyrlovoy
,
S. I.
,
Vasilev
,
I. P.
, and
Chattha
,
J. A.
,
2006
, “
Investigation of the Characteristics of the Fuel Injection Pump of a Diesel Engine Fuelled With Viscous Vegetable Oil-Diesel Oil Blends
,”
Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
,
220
(
6
), pp.
787
792
.
202.
Gupta
,
J. G.
, and
Agarwal
,
A. K.
,
2021
, “
Engine Durability and Lubricating Oil Tribology Study of a Biodiesel Fuelled Common Rail Direct Injection Medium-Duty Transportation Diesel Engine
,”
Wear
,
486–487
, p.
204104
.
203.
Imtenan
,
S.
,
Masjuki
,
H. H.
,
Varman
,
M.
,
Arbab
,
M. I.
,
Sajjad
,
H.
, and
Fattah
,
I. M. R.
,
2014
, “
Emission and Performance Improvement Analysis of Biodiesel-Diesel Blends With Additives
,”
Procedia Eng.
,
90
, pp.
472
477
.
204.
Kuszewski
,
H.
,
Jaworski
,
A.
, and
Ustrzycki
,
A.
,
2017
, “
Lubricity of Ethanol–Diesel Blends—Study With the HFRR Method
,”
Fuel
,
208
, pp.
491
498
.
205.
Ameen
,
N. H. A.
, and
Durak
,
E.
,
2020
, “
Study of the Tribological Properties the Mixture of Soybean Oil and Used (Waste) Frying Oil Fatty Acid Methyl Ester Under Boundary Lubrication Conditions
,”
Renew. Energy
,
145
, pp.
1730
1747
.
206.
Agarwal
,
S.
,
Chhibber
,
V. K.
, and
Bhatnagar
,
A. K.
,
2013
, “
Tribological Behavior of Diesel Fuels and the Effect of Anti-Wear Additives
,”
Fuel
,
106
, pp.
21
29
.
207.
Voitik
,
R. M.
, and
Ren
,
N.
,
1995
, “
Diesel Fuel Lubricity by Standard Four Ball Apparatus Utilizing Ball on Three Disks, BOTD
,” SAE Technical Paper No. 950247, pp.
1
6
.
208.
Nikanjam
,
M.
, and
Rutherford
,
J.
,
2006
, “
Improving the Precision of the HFRR Lubricity Test
,” SAE Technical Paper No. 2006-01-3363, pp.
1
9
.
209.
Bovington
,
C.
,
Caprotti
,
R.
,
Meyer
,
K.
, and
Spikes
,
H. A.
,
1995
, “
Development of Laboratory Tests to Predict the Lubricity Properties of Diesel Fuels and Their Application to the Development of Highly Refined Diesel Fuels
,”
Tribotest
,
2
(
93
), pp.
1354
4063
.
210.
Lehto
,
K.
,
Vepsäläinen
,
A.
,
Kiiski
,
U.
, and
Kuronen
,
M.
,
2014
, “
Diesel Fuel Lubricity Comparisons With HFRR and Scuffing Load Ball-on-Cylinder Lubricity Evaluator Methods
,”
SAE Int. J. Fuels Lubr.
,
7
(
3
), pp.
842
848
.
211.
Kuronen
,
M. A.
,
Kiiski
,
U.
, and
Lehto
,
K.
,
2015
, “
Diesel Fuel Lubricity Comparisons With HFRR and Scuffing Load Ball-on-Cylinder Lubricity Evaluator Methods, Part II
,” SAE Technical Paper No. 2015-24-2498, pp.
1
7
.
212.
Alves
,
S. M.
,
De Farias
,
A. C. M.
,
Mello
,
V. S.
, and
Oliveira
,
J. J.
,
2019
, “
Effect of Soybean Biodiesel Addition on Tribological Performance of Ultra-Low Sulfur Diesel
,”
ASME J. Tribol.
,
141
(
2
), p.
021803
.
213.
de Oliveira
,
J. J.
,
de Farias
,
A. C. M.
, and
Alves
,
S. M.
,
2017
, “
Evaluation of the Biodiesel Fuels Lubricity Using Vibration Signals and Multiresolution Analysis
,”
Tribol. Int.
,
109
, pp.
104
113
.
214.
De Farias
,
A. C. M.
,
Medeiros
,
A. A. S.
,
De Oliveira Júnior
,
J. J.
, and
Alves
,
S. M.
,
2015
, “
Correlation Between Fuel Lubricity and Vibration Signals Obtained in Ball-Disc Analysis Using Fourier Transform
,”
Mater. Res.
,
18
(
suppl 2
), pp.
210
219
.
215.
Weinebeck
,
A.
,
Kaminski
,
S.
,
Murrenhoff
,
H.
, and
Leonhard
,
K.
,
2017
, “
A New QSPR-Based Prediction Model for Biofuel Lubricity
,”
Tribol. Int.
,
115
, pp.
274
284
.
216.
Masuch
,
K.
,
Fatemi
,
A.
,
Murrenhoff
,
H.
, and
Leonhard
,
K.
,
2011
, “
A COSMO-RS Based QSPR Model for the Lubricity of Biodiesel and Petrodiesel Components
,”
Lubr. Sci.
,
23
(
6
), pp.
249
262
.
217.
Wu
,
P. R.
,
Zhang
,
W.
,
Liu
,
Z.
, and
Cheng
,
Z. L.
,
2019
, “
A Novel Preparation Method for MoS2 Nanosheets With Good Tribology Performance by the Combination of Expansion and Freeze Exfoliation
,”
Ceram. Int.
,
45
(
2
), pp.
1730
1736
.
218.
Hussein
,
R. Z. K.
,
Attia
,
N. K.
,
Fouad
,
M. K.
, and
ElSheltawy
,
S. T.
,
2021
, “
Experimental Investigation and Process Simulation of Biolubricant Production From Waste Cooking Oil
,”
Biomass Bioenergy
,
144
, p.
105850
.
219.
Wang
,
W.
,
Shen
,
B.
,
Li
,
Y.
,
Ni
,
Q.
,
Zhou
,
L.
, and
Du
,
F.
,
2021
, “
Friction Reduction Mechanism of Glycerol Monooleate-Containing Lubricants at Elevated Temperature—Transition From Physisorption to Chemisorption
,”
Sci. Prog.
,
104
(
1
), pp.
1
15
.
220.
Piras
,
F. M.
,
Rossi
,
A.
, and
Spencer
,
N. D.
,
2002
, “
Growth of Tribological Films: In Situ Characterization Based on Attenuated Total Reflection Infrared Spectroscopy
,”
Langmuir
,
18
(
17
), pp.
6606
6613
.
221.
Özkan
,
D.
, and
Yaşa
,
Y.
,
2020
, “
Enhanced MoS2 Antiwear Performance by the Presence of ZnSO4 Against ZDDP
,”
J. Mech. Eng. Sci.
,
234
(
15
), pp.
1
17
.
222.
Hamdan
,
S. H.
,
Chong
,
W. W. F.
,
Ng
,
J.
,
Chong
,
C. T.
, and
Rajoo
,
S.
,
2017
, “
A Study of the Tribological Impact of Biodiesel
,”
Process Saf. Environ. Protect.
,
112
, pp.
288
297
.
223.
Abdul Hakim Shaah
,
M.
,
Hossain
,
M. S.
,
Salem Allafi
,
F. A.
,
Alsaedi
,
A.
,
Ismail
,
N.
,
Ab Kadir
,
M. O.
, and
Ahmad
,
M. I.
,
2021
, “
A Review on Non-Edible Oil as a Potential Feedstock for Biodiesel: Physicochemical Properties and Production Technologies
,”
RSC Adv.
,
11
(
40
), pp.
25018
25037
.
224.
Mohammad aminul Islam
,
A. K.
,
Putri Primandari
,
S. R.
, and
Yakoob
,
Z.
,
2018
, “Non-Edible Vegetable Oils as Renewable Resources for Biodiesel Production: South-East Asia Perspective,”
Advances in Biofuels and Bioenergy
,
M.
N-Rao
, and
J.
Soneji
, eds.,
IntechOpen
,
London
, pp.
201
2015
.
225.
Knothe
,
G.
,
2009
, “
Improving Biodiesel Fuel Properties by Modifying Fatty Ester Composition
,”
Energy Environ. Sci.
,
2
(
7
), pp.
759
766
.
226.
Bansod
,
P.
,
Kodape
,
S.
,
Bhasarkar
,
J.
, and
Bhutada
,
D.
,
2021
, “
Ceramic Membranes (Al2O3/TiO2) Used for Separation Glycerol From Biodiesel Using Response Surface Methodology
,”
Mater. Today: Proc.
,
57
(
3
), pp.
1
7
.
227.
Schiewer
,
S.
, and
Horel
,
A.
,
2017
, “
Biodiesel Addition Influences Biodegradation Rates of Fresh and Artificially Weathered Diesel Fuel in Alaskan Sand
,”
J. Cold Reg. Eng.
,
31
(
4
), p.
04017012
.
228.
Cyriac
,
F.
,
Yi
,
T. X.
,
Poornachary
,
S. K.
, and
Chow
,
P. S.
,
2021
, “
Effect of Temperature on Tribological Performance of Organic Friction Modifier and Anti-Wear Additive: Insights From Friction, Surface (ToF-SIMS and EDX) and Wear Analysis
,”
Tribol. Int.
,
157
(
12
), p.
106896
.
229.
Mitchell
,
K.
,
Neville
,
A.
,
Walker
,
G. M.
,
Sutton
,
M. R.
, and
Cayre
,
O. J.
,
2018
, “
Synthesis and Tribological Testing of Poly(Methyl Methacrylate) Particles Containing Encapsulated Organic Friction Modifier
,”
Tribol. Int.
,
124
(
3
), pp.
124
133
.
230.
Fry
,
B. M.
,
Chui
,
M. Y.
,
Moody
,
G.
, and
Wong
,
J. S. S.
,
2020
, “
Interactions Between Organic Friction Modifier Additives
,”
Tribol. Int.
,
151
(
5
), p.
106438
.
231.
Singh
,
S.
,
Ramakrishna
,
S.
, and
Gupta
,
M. K.
,
2017
, “
Towards Zero Waste Manufacturing: A Multidisciplinary Review
,”
J. Cleaner Prod.
,
168
, pp.
1230
1243
.
232.
Awogbemi
,
O.
,
Von Kallon
,
D. V.
, and
Aigbodion
,
V. S.
,
2021
, “
Trends in the Development and Utilization of Agricultural Wastes as Heterogeneous Catalyst for Biodiesel Production
,”
J. Energy Inst.
,
98
, pp.
244
258
.
233.
Rastegari
,
H.
,
Ghaziaskar
,
H. S.
, and
Yalpani
,
M.
,
2015
, “
Valorization of Biodiesel Derived Glycerol to Acetins by Continuous Esterification in Acetic Acid: Focusing on High Selectivity to Diacetin and Triacetin With No Byproducts
,”
Ind. Eng. Chem. Res.
,
54
(
13
), pp.
3279
3284
.
234.
Hobuss
,
C. B.
,
Da Silva
,
F. A.
,
Dos Santos
,
M. A. Z.
,
De Pereira
,
C. M. P.
,
Schulz
,
G. A. S.
, and
Bianchini
,
D.
,
2020
, “
Synthesis and Characterization of Monoacylglycerols Through Glycerolysis of Ethyl Esters Derived From Linseed Oil by Green Processes
,”
RSC Adv.
,
10
(
4
), pp.
2327
2336
.
235.
Davidson
,
J. E.
,
Hinchley
,
S. L.
,
Harris
,
S. G.
,
Parkin
,
A.
,
Parsons
,
S.
, and
Tasker
,
P. A.
,
2006
, “
Molecular Dynamics Simulations to Aid the Rational Design of Organic Friction Modifiers
,”
J. Mol. Graphics Modell.
,
25
(
4
), pp.
495
506
.
236.
Pang
,
J.
,
Zheng
,
M.
,
Sun
,
R.
,
Wang
,
A.
,
Wang
,
X.
, and
Zhang
,
T.
,
2016
, “
Synthesis of Ethylene Glycol and Terephthalic Acid From Biomass for Producing PET
,”
Green Chem.
,
18
(
2
), pp.
342
359
.
237.
Haslenda
,
H.
, and
Jamaludin
,
M. Z.
,
2011
, “
Industry to Industry By-Products Exchange Network Towards Zero Waste in Palm Oil Refining Processes
,”
Resour. Conserv. Recycl.
,
55
(
7
), pp.
713
718
.
238.
Msanne
,
J.
,
Kim
,
H.
, and
Cahoon
,
E. B.
,
2020
, “
Biotechnology Tools and Applications for Development of Oilseed Crops With Healthy Vegetable Oils
,”
Biochimie
,
178
(
9
), pp.
4
14
.
239.
Shu Ai
,
Z.
,
Xiao Feng
,
G.
,
Ren Ping
,
Y.
,
Qin
,
X.
,
Ling Ping
,
X.
, and
Zhong Xun
,
W.
,
2020
, “
Self-Lubrication and Wear-Resistance Mechanism of Graphene-Modified Coatings
,”
Ceram. Int.
,
46
(
10
), pp.
15915
15924
.
240.
Tatsumi
,
G.
,
Ratoi
,
M.
,
Shitara
,
Y.
,
Sakamoto
,
K.
, and
Mellor
,
B. G.
,
2020
, “
Effect of Organic Friction Modifiers on Lubrication of PEEK-Steel Contact
,”
Tribol. Int.
,
151
, p.
106513
.
241.
Tang
,
Z.
, and
Li
,
S.
,
2014
, “
A Review of Recent Developments of Friction Modifiers for Liquid Lubricants (2007-Present)
,”
Curr. Opin. Solid State Mater. Sci.
,
18
(
3
), pp.
119
139
.
242.
Rashed
,
M. M.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Alabdulkarem
,
A.
,
Rahman
,
M. M.
,
Imdadul
,
H. K.
, and
Rashedul
,
H. K.
,
2016
, “
Study of the Oxidation Stability and Exhaust Emission Analysis of Moringa olifera Biodiesel in a Multi-Cylinder Diesel Engine With Aromatic Amine Antioxidants
,”
Renew. Energy
,
94
, pp.
294
303
.
243.
Rashed
,
M. M.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Alabdulkarem
,
A.
,
Imdadul
,
H. K.
,
Rashedul
,
H. K.
,
Shahin
,
M. M.
, and
Habibullah
,
M.
,
2016
, “
A Comprehensive Study on the Improvement of Oxidation Stability and NOx Emission Levels by Antioxidant Addition to Biodiesel Blends in a Light-Duty Diesel Engine
,”
RSC Adv.
,
6
(
27
), pp.
22436
22446
.
244.
Cheng
,
X.
,
Ng
,
H. K.
,
Gan
,
S.
,
Ho
,
J. H.
, and
Pang
,
K. M.
,
2018
, “
Numerical Analysis of the Effects of Biodiesel Unsaturation Levels on Combustion and Emission Characteristics Under Conventional and Diluted Air Conditions
,”
Energy Fuels
,
32
(
8
), pp.
8392
8410
.
245.
Miraboutalebi
,
S. M.
,
Kazemi
,
P.
, and
Bahrami
,
P.
,
2016
, “
Fatty Acid Methyl Ester (FAME) Composition Used for Estimation of Biodiesel Cetane Number Employing Random Forest and Artificial Neural Networks: A New Approach
,”
Fuel
,
166
, pp.
143
151
.
246.
Giakoumis
,
E. G.
, and
Sarakatsanis
,
C. K.
,
2019
, “
A Comparative Assessment of Biodiesel Cetane Number Predictive Correlations Based on Fatty Acid Composition
,”
Energies
,
12
(
3
), pp.
1
30
.
247.
Batt
,
R. J.
,
McMillan
,
J. A.
, and
Bradbury
,
I. P.
,
1996
, “
Lubricity Additives-Performance and No-Harm Effects in Low Sulfur Fuels
,” SAE Technical Paper No. 961943, pp.
9
17
.
248.
Leedham
,
A.
,
Caprotti
,
R.
,
Graupner
,
O.
, and
Klaua
,
T.
,
2004
, “
Impact of Fuel Additives on Diesel Injector Deposits
,” SAE Technical Paper No. 2004-01-2935, pp.
1
6
.
249.
Farahani
,
M.
,
Pagé
,
D. J. Y. S.
, and
Turingia
,
M. P.
,
2011
, “
Sedimentation in Biodiesel and Ultra Low Sulfur Diesel Fuel Blends
,”
Fuel
,
90
(
3
), pp.
951
957
.
250.
Aakko-Saksa
,
P. T.
,
Westerholm
,
M.
,
Pettinen
,
R.
,
Söderström
,
C.
,
Roslund
,
P.
,
Piimäkorpi
,
P.
,
Koponen
,
P.
, et al
,
2020
, “
Renewable Methanol With Ignition Improver Additive for Diesel Engines
,”
Energy Fuels
,
34
(
1
), pp.
379
388
.
251.
Loureiro
,
D. B.
,
Olivera
,
C.
,
Tondo
,
M. L.
,
Herrero
,
M. S.
,
Salvatierra
,
L. M.
, and
Pérez
,
L. M.
,
2020
, “
Microbial Characterization of a Facultative Residual Sludge Obtained From a Biogas Plant With Ability to Degrade Commercial B10 Diesel Oil
,”
Ecol. Eng.
,
144
, p.
105710
.
252.
Kumar Gupta
,
P.
,
2020
, “
Fate, Transport, and Bioremediation of Biodiesel and Blended Biodiesel in Subsurface Environment: A Review
,”
J. Environ. Eng.
,
146
(
1
), p.
03119001
.
253.
Ng
,
Y. F.
,
Ge
,
L.
,
Chan
,
W. K.
,
Tan
,
S. N.
,
Yong
,
J. W. H.
, and
Tan
,
T. T. Y.
,
2015
, “
An Environmentally Friendly Approach to Treat Oil Spill: Investigating the Biodegradation of Petrodiesel in the Presence of Different Biodiesels
,”
Fuel
,
139
, pp.
523
528
.
254.
Karmakar
,
G.
, and
Ghosh
,
P.
,
2016
, “
Atom Transfer Radical Polymerization of Soybean Oil and Its Evaluation as a Biodegradable Multifunctional Additive in the Formulation of Eco-Friendly Lubricant
,”
ACS Sustain. Chem. Eng.
,
4
(
3
), pp.
775
781
.
255.
Mulyatun
,
M.
,
Prameswari
,
J.
,
Istadi
,
I.
, and
Widayat
,
W.
,
2021
, “
Production of Non-Food Feedstock Based Biodiesel Using Acid-Base Bifunctional Heterogeneous Catalysts: A Review
,”
Fuel
,
314
, p.
122749
.
256.
Kenbeek
,
D.
,
Buenemann
,
T.
, and
Rieffe
,
H.
,
2000
, “
Review of Organic Friction Modifiers—Contribution to Fuel Efficiency?
,” SAE Technical Paper No. 2000-01-17, pp.
1
11
.
You do not currently have access to this content.