Abstract

The present study uses the smoothed particle hydrodynamics (SPH) and discrete element method (DEM) coupling to investigate influence of the hexagonal boron nitride (hBN) particles on friction of the elastic coarse-grained micronscale iron. The hBN lubricant particles significantly improve the friction performance of iron in various simulation behaviors. The particle size, the air/water background containing the particles, and its temperature result in reduction of the friction coefficient. The surface mending, the protective film, and the energy dissipation are the main mechanisms related to the friction reduction. Additionally, it is worthy to note that the static friction and the kinetic friction can be clearly observed by this elastic coarse-graining.

References

1.
Latson
,
J.
,
2015
, “
How the American Oil Industry Got Its Start
,” Time Magazine.
2.
Nosonovsky
,
M.
, and
Bhushan
,
B.
,
2010
, “
Green Tribology: Principles, Research Areas and Challenges
,”
Philos. Trans. R. Soc. A
,
368
(
1929
), pp.
4677
4694
.
3.
Nosonovsky
,
M.
,
2010
, “
Self-Organization at the Frictional Interface for Green Tribology
,”
Philos. Trans. R. Soc. A
,
368
(
1929
), pp.
4755
4774
.
4.
Menezes
,
P. L.
,
Lovell
,
M. R.
,
Kabir
,
M. A.
,
Higgs
,
C. F.
, and
Rohatgi
,
P. K.
,
2012
, “Green Lubricants: Role of Additive Size,”
Green Tribology. Green Energy and Technology
,
M.
Nosonovsky
, and
B.
Bhushan
, eds.,
Springer
,
Berlin
.
5.
Nosonovsky
,
M.
, and
Bhushan
,
B.
,
2009
, “
Thermodynamics of Surface Degradation, Self-Organization and Self-Healing for Biomimetic Surfaces
,”
Philos. Trans. R. Soc. A
,
367
(
1893
), pp.
1607
1627
.
6.
Nosonovsky
,
M.
,
Amano
,
R.
,
Lucci
,
J. M.
, and
Rohatgi
,
P. K.
,
2009
, “
Physical Chemistry of Self-Organization and Self-Healing in Metals
,”
Phys. Chem. Chem. Phys.
,
11
(
41
), pp.
9530
9536
.
7.
Nosonovsky
,
M.
, and
Bhushan
,
B.
,
2010
, “
Surface Self-Organization: From Wear to Self-Healing in Biological and Technical Surfaces
,”
Appl. Surf. Sci.
,
256
(
12
), pp.
3982
3987
.
8.
Reeves
,
C. J.
,
Menezes
,
P. L.
,
Jen
,
T. C.
, and
Lovell
,
M. R.
,
2015
, “
The Influence of Fatty Acids on Tribological and Thermal Properties of Natural Oils as Sustainable Biolubricants
,”
Tribol. Int.
,
90
, pp.
123
134
.
9.
Celik
,
O. N.
,
Ay
,
N.
, and
Goncu
,
Y.
,
2013
, “
Effect of Nano Hexagonal Boron Nitride Lubricant Additives on the Friction and Wear Properties of AISI 4140 Steel
,”
Part. Sci. Technol.
,
31
(
5
), pp.
501
506
.
10.
Paras
,
L. P.
,
Cortes
,
D. M.
, and
Tijerina
,
J. T.
,
2019
, “Eco-friendly Nanoparticle Additives for Lubricants and Their Tribological Characterization,”
Handbook of Ecomaterials
,
L.
Martinez
,
O.
Kharissova
, and
B.
Kharisov
, eds.,
Springer
,
Cham
.
11.
Dai
,
W.
,
Kheireddin
,
B.
,
Gao
,
H.
, and
Liang
,
H.
,
2016
, “
Roles of Nanoparticles in Oil Lubrication
,”
Tribol. Int.
,
102
, pp.
88
98
.
12.
Reeves
,
C. J.
, and
Menezes
,
P. L.
,
2017
, “
Evaluation of Boron Nitride Particles on the Tribological Performance of Avocado and Canola Oil for Energy Conservation and Sustainability
,”
Int. J. Adv. Manuf. Technol.
,
89
(
9–12
), pp.
3475
3486
.
13.
Chen
,
B.
,
Bi
,
Q.
,
Yang
,
J.
,
Xia
,
Y.
, and
Hao
,
J.
,
2008
, “
Tribological Properties of Solid Lubricants (Graphite, h-BN) for Cu-Based P/M Friction Composites
,”
Tribol. Int.
,
41
(
12
), pp.
1145
1152
.
14.
Lelonis
,
D. A.
,
Tereshko
,
J. W.
, and
Andersen
,
C. M.
,
2007
,
Boron Nitride Powder a High-Performance Alternative for Solid Lubrication
,
Momentive Performance Materials Inc.
, QTZ-81506.
15.
Wan
,
Q.
,
Jin
,
Y.
,
Sun
,
P.
, and
Ding
,
Y.
,
2015
, “
Tribological Behaviour of a Lubricant Oil Containing Boron Nitride Nanoparticles
,”
Procedia Eng.
,
102
, pp.
1038
1045
.
16.
Kumari
,
S.
,
Sharma
,
O. P.
,
Gusain
,
R.
,
Mungse
,
H. P.
,
Kukrety
,
A.
,
Kumar
,
N.
,
Sugimura
,
H.
, and
Khatri
,
O. P.
,
2015
, “
Alkyl Chain Grafted Hexagonal Boron Nitride Nanoplatelets as Oil Dispersible Additive for Friction and Wear Reductions
,”
ACS Appl. Mater. Interfaces
,
7
(
6
), pp.
3708
3716
.
17.
Chen
,
S.
,
Bi
,
Y.
,
Zhang
,
H.
,
Liang
,
J.
,
Wellburn
,
D.
, and
Chang-sheng
,
L.
,
2015
, “
Effect of BN Fraction on the Mechanical and Tribological Properties of Cu Alloy/BN Self-Lubricating Sleeves
,”
J. Compos. Mater.
,
49
(
30
), pp.
1
11
.
18.
Reeves
,
C. J.
,
Menezes
,
P. L.
,
Lovell
,
M. R.
, and
Jen
,
T. C.
,
2013
, “
The Size Effect of Boron Nitride Particles on the Tribological Performance of Biolubricants for Energy Conservation and Sustainability
,”
Tribol. Lett.
,
51
(
3
), pp.
437
452
.
19.
Pawlak
,
Z.
,
Kaldonski
,
T.
,
Pai
,
R.
,
Bayraktar
,
E.
, and
Oloyede
,
A.
,
2009
, “
A Comparative Study on the Tribological Behaviour of Hexagonal Boron Nitride (h-BN) as Lubricating Micro-Particles—An Additive in Porous Sliding Bearings for a Car Clutch
,”
Wear
,
267
(
5–8
), pp.
1198
2002
.
20.
Maveyraud
,
C.
,
Benz
,
W.
,
Sornette
,
A.
, and
Sornette
,
D.
,
1999
, “
Solid Friction at High Sliding Velocities: An Explicit Three-Dimensional Dynamical Smoothed Particle Hydrodynamics Approach
,”
J. Geophys. Res.
,
104
(
B12
), pp.
28769
28788
.
21.
Sang
,
L. V.
,
Yano
,
A.
,
Fujii
,
S.
,
Sugimura
,
N.
, and
Washizu
,
H.
,
2018
, “
Coarse-Grained Model for Spring Friction Study of Micron-Scale Iron by Smoothed Particle Hydrodynamics
,”
EPL
,
122
(
2
), pp.
26004
26008
.
22.
Sang
,
L. V.
,
Yano
,
A.
,
Isohashi
,
A.
,
Sugimura
,
N.
, and
Washizu
,
H.
,
2019
, “
Smoothed Particle Hydrodynamics Study of Friction of the Coarse-Grained α-Al2O3/α-Al2O3 and α-Fe2O3/α-Fe2O3 Contacts in Behavior of the Spring Interfacial Potential
,”
Tribol. Int.
,
135
, pp.
296
304
.
23.
Sang
,
L. V.
,
Yano
,
A.
,
Isohashi
,
A.
,
Sugimura
,
N.
, and
Washizu
,
H.
,
2020
, “
Friction and Friction Heat of Micronscale Iron
,”
ASME J. Tribol.
,
142
(
9
), p.
091702
.
24.
He
,
Y.
,
Bayly
,
A. E.
,
Hassanpour
,
A.
,
Muller
,
F.
,
Wu
,
K.
, and
Yang
,
D.
,
2018
, “
A GPU-Based Coupled SPH-DEM Method for Particle-Fluid Flow With Free Surfaces
,”
Powder Technol.
,
338
, pp.
548
552
.
25.
Wu
,
K.
,
Yang
,
D.
, and
Wright
,
N.
,
2016
, “
A Coupled SPH-DEM Model for Fluid-Structure Interaction Problems With Free-Surface Flow and Structural Failure
,”
Comput. Struct.
,
177
, pp.
141
161
.
26.
Robinson
,
M.
,
Ramaioli
,
M.
, and
Luding
,
S.
,
2014
, “
Fluid–Particle Flow Simulations Using Two-Way-Coupled Mesoscale SPH–DEM and Validation
,”
Int. J. Multiphase Flow
,
59
, pp.
121
134
.
27.
Lombardi
,
J. R.
, and
Davis
,
B.
,
2002
, “
Periodic Properties of Force Constants of Small Transition-Metal and Lanthanide Clusters
,”
Chem. Rev.
,
102
(
6
), pp.
2431
2460
.
28.
Huang
,
P.
,
Shen
,
L.
,
Gan
,
Y.
,
Nguyen
,
G. D.
,
El-Zein
,
A.
, and
Maggi
,
F.
,
2018
, “
Coarse-Grained Modeling of Multiphase Interactions at Microscale
,”
J. Chem. Phys.
,
149
(
12
), pp.
124505
124520
.
29.
Israelachvili
,
J. N.
,
2011
,
Intermolecular and Surface Forces
,
Elsevier
,
New York
.
30.
Reed
,
R. P.
, and
Clark
,
A. F.
,
1985
,
Materials at Low Temperatures
,
American Society for Metals
,
Materials Park, OH
.
31.
Cakir
,
D.
,
Kecik
,
D.
,
Sahin
,
H.
,
Durgun
,
E.
, and
Peeters
,
F. M.
,
2015
, “
Realization of p-n Junction in Single Layer Boron-Phosphide
,”
Phys. Chem. Chem. Phys.
,
17
(
19
), pp.
13013
13020
.
32.
Phuoc
,
T. X.
,
2005
, “
A Comparative Study of the Photon Pressure Force, the Photophoretic Force, and the Adhesion van der Waals Force
,”
Opt. Commun.
,
245
(
1–6
), pp.
27
35
.
33.
Mohona
,
T. M.
,
Gupta
,
A.
,
Masud
,
A.
,
Chien
,
S. C.
,
Lin
,
L. C.
,
Nalam
,
P. C.
, and
Aich
,
N.
,
2019
, “
Aggregation Behavior of Inorganic 2D Nanomaterials Beyond Graphene: Insights From Molecular Modeling and Modified DLVO Theory
,”
Environ. Sci. Technol.
,
53
(
8
), pp.
4161
4172
.
34.
Stephan
,
K.
,
1979
,
Viscosity of Dense Fluids
,
Springer
,
New York
.
35.
Korson
,
L.
,
Hansen
,
W. D.
, and
Millero
,
F. J.
,
1969
, “
Viscosity of Water at Various Temperatures
,”
J. Phys. Chem.
,
73
(
1
), pp.
34
39
.
36.
Allahdadi
,
F. A.
,
Carney
,
T. C.
,
Hipp
,
J. R.
,
Libersky
,
L. D.
, and
Petschek
,
A. G.
,
1993
, “
High Strain Lagrangian Hydrodynamics: A Three Dimensional SPH Code for Dynamic Material Response
,”
J. Comput. Phys.
,
109
(
1
), pp.
67
75
.
37.
Sugihara
,
T.
, and
Enomoto
,
T.
,
2017
, “
Performance of Cutting Tools With Dimple Textured Surfaces: A Comparative Study of Different Texture Patterns
,”
Precis. Eng.
,
49
, pp.
52
60
.
38.
Mann
,
D. J.
,
Zhong
,
L.
, and
Hase
,
W. L.
,
2001
, “
Effect of Surface Stiffness on the Friction of Sliding Model Hydroxylated α-Alumina Surfaces
,”
J. Phys. Chem. B
,
105
(
48
), pp.
12032
12044
.
39.
Braun
,
O. M.
, and
Peyrard
,
M.
,
2010
, “
Master Equation Approach to Friction at the Mesoscale
,”
Phys. Rev. E
,
82
(
3
), pp.
036117
036135
.
40.
Braun
,
O. M.
, and
Tosatti
,
E.
,
2009
, “
Kinetics of Stick-Slip Friction in Boundary Lubrication
,”
EPL
,
88
(
4
), pp.
48003
48008
.
41.
Costagliola
,
G.
,
Bosia
,
F.
, and
Pugno
,
N. M.
,
2016
, “
Static and Dynamic Friction of Hierarchical Surfaces
,”
Phys. Rev. E
,
94
(
6
), pp.
063003
063012
.
42.
Costagliola
,
G.
,
Bosia
,
F.
, and
Pugno
,
N. M.
,
2018
, “
A 2-D Model for Friction of Complex Anisotropic Surfaces
,”
J. Mech. Phys. Solids
,
112
, pp.
50
55
.
43.
Iwasawa
,
M.
,
Tanikawa
,
A.
,
Hosono
,
N.
,
Nitadori
,
K.
,
Muranushi
,
T.
, and
Makino
,
J.
,
2016
, “
Implementation and Performance of FDPS: A Framework for Developing Parallel Particle Simulation Codes
,”
Publ. Astron. Soc. Japan
,
68
(
4
), pp.
54
75
.
44.
Bhushan
,
B.
,
1996
,
Tribology and Mechanics of Magnetic Storage Devices
,
Springer-Verlag
,
New York
.
45.
Liu
,
E.
,
Blanpain
,
B.
,
Celis
,
J. P.
, and
Roos
,
J. R.
,
1998
, “
Comparative Study Between Macrotribology and Nanotribology
,”
J. Appl. Phys.
,
84
(
9
), pp.
4859
4865
.
46.
Chan
,
S. M. T.
,
Neu
,
C. P.
,
Komvopoulos
,
K.
, and
Reddi
,
A. H.
,
2011
, “
Dependence of Nanoscale Friction and Adhesion Properties of Articular Cartilage on Contact Load
,”
J. Biomech.
,
44
(
7
), pp.
1340
1345
.
47.
Chowdhury
,
M. A.
,
Nuruzzaman
,
D. M.
,
Mia
,
A. H.
, and
Rahaman
,
M. L.
,
2012
, “
Friction Coefficient of Different Material Pairs Under Different Normal Loads and Sliding Velocities
,”
Tribol. Ind.
,
34
(
1
), pp.
18
23
.
48.
Katano
,
Y.
,
Nakano
,
K.
,
Otsuki
,
M.
, and
Matsukawa
,
H.
,
2014
, “
Novel Friction Law for the Static Friction Force Based on Local Precursor Slipping
,”
Sci. Rep.
,
4
(
1
), pp.
6324
6329
.
49.
Alarcon
,
H.
,
Salez
,
T.
,
Poulard
,
C.
,
Bloch
,
J. F.
,
Raphael
,
E.
,
Veress
,
K. D.
, and
Restagno
,
F.
,
2016
, “
Self-Amplification of Solid Friction in Interleaved Assemblies
,”
Phys. Rev. Lett.
,
116
(
1
), pp.
015502
015506
.
50.
Kuznetsov
,
V. D.
,
1966
,
Metal Transfer and Build-up in Friction and Cutting
,
Pergamon Press
,
London
.
51.
Furlan
,
K. P.
,
Prates
,
P. B.
,
Santos
,
T. A. D.
,
Dias
,
M. V. G.
,
Ferreira
,
H. T.
,
Neto
,
J. B. R.
, and
Klein
,
A. N.
,
2015
, “
Influence of Alloying Elements on the Sintering Thermodynamics, Microstructure and Properties of Fe–MoS2 Composites
,”
J. Alloys Compd.
,
652
, pp.
450
458
.
52.
Rodriguez
,
P. G.
,
van den Nieuwenhuijzen
,
K.
,
Lette
,
W.
,
Schipper
,
D.
, and
ten Elshof
,
J. E.
,
2016
, “
Tribochemistry of Bismuth and Bismuth Salts for Solid Lubrication
,”
ACS Appl. Mater. Interfaces
,
8
(
11
), pp.
7601
7606
.
53.
Blau
,
P. J.
,
2009
,
Friction Science and Technology: From Concepts to Applications
,
CRC Press
,
New York
.
54.
Zhang
,
Y.
,
Wang
,
W.
,
Hu
,
Z.
,
Liu
,
K.
, and
Chang
,
J.
, “
Investigation of hBN Powder Lubricating Characteristics of Die Steel H13–Ceramic Si3N4 Tribopair at 800° C
,”
Proc. Inst. Mech. Eng. J.
,
234
(
4
), pp.
622
671
.
55.
Hichri
,
Y.
,
Cerezo
,
V.
, and
Do
,
M. T.
,
2017
, “
Friction on Road Surfaces Contaminated by Fine Particles: Some New Experimental Evidences
,”
Proc. Inst. Mech. Eng. J.
,
231
(
9
), pp.
1029
1045
.
56.
Hichri
,
Y.
,
Cerezo
,
V.
, and
Do
,
M. T.
,
2017
, “
Effect of Dry Deposited Particles on the Tire/Road Friction
,”
Wear
,
376–377
, pp.
1437
1449
.
57.
Hichri
,
Y.
,
Cerezo
,
V.
, and
Do
,
M. T.
,
2019
, “
Modeling of the Surface Coverage and Application to the Calculation of Friction on Surfaces Contaminated by Particles
,”
Wear
,
426–427
, pp.
1082
1093
.
58.
Alias
,
A. A.
,
Kinoshita
,
H.
, and
Fujii
,
M.
,
2015
, “
Tribological Properties of Diamond Nanoparticle Additive in Water Under a Lubrication Between Steel Plate and Tungsten Carbide Ball
,”
J. Adv. Mech. Des. Syst.
,
9
(
1
), pp.
1
9
.
59.
Pawlak
,
Z.
,
Kaldonski
,
T. J.
,
Mackod
,
M.
, and
Urbaniak
,
W.
,
2017
, “
h-BN Lamellar Lubricant in Hydrocarbon and Formulated Oil in Porous Sintered Bearings (Iron + h-BN)
,”
Arch. Civ. Mech. Eng.
,
17
(
3
), pp.
687
693
.
60.
Gupta
,
M. K.
,
Bijwe
,
J.
, and
Padhan
,
M.
,
2018
, “
Role of Size of Hexagonal Boron Nitride Particles on Tribo-Performance of Nano and Micro Oils
,”
Lubr. Sci.
,
30
(
8
), pp.
1
16
.
61.
Gholami
,
R.
,
Akbarzadeh
,
S.
,
Ziaei-Rad
,
S.
, and
Khonsari
,
M. M.
,
2021
, “
Applying Load-Sharing Method to the Sliding Contact in the Presence of Nano-Lubricants
,”
Proc. Inst. Mech. Eng. J.
,
235
(
4
), pp.
786
797
. .
62.
He-long
,
Y.
,
Yi
,
X.
,
Pei-jing
,
S.
,
Bin-shi
,
X.
,
Xiao-li
,
W.
, and
Qian
,
L.
,
2008
, “
Tribological Properties and Lubricating Mechanisms of Cu Nanoparticles in Lubricant
,”
Trans. Nonferrous Met. Soc. China
,
8
(
3
), pp.
636
641
.
63.
Ghaednia
,
H.
,
Jackson
,
R. L.
, and
Khodadadi
,
J. M.
,
2015
, “
Experimental Analysis of Stable CuO Nanoparticle Enhanced Lubricants
,”
J. Exp. Nanosci.
,
10
(
1
), pp.
1
18
.
You do not currently have access to this content.