Abstract

This paper presents a finite element model (FEM) to investigate the effect of prior austenite grain refinement on rolling contact fatigue (RCF). RCF life was determined using continuum damage mechanics (CDM), which simulated material deterioration as a function of cycle. Continuum damage mechanics calculations in this investigation considered the subsurface shear (orthogonal) reversal to be responsible for RCF failure. To establish the CDM critical parameters—resistance stress (σr) and damage rate exponent (m)—torsion stress-life data from open literature of three different grain sizes for the same material was used. It was observed from the torsion S-N (stress-life) data that the resistance stress exhibits a linear relationship with grain diameter. As grain diameter was refined, the resistance stress was found to increase. The damage rate exponent (m) displayed no relation to grain diameter; hence, the average value from the three torsion S-N curves was used in this investigation. In order to assess the effect of grain refinement on RCF life, a series of unique material microstructures were constructed using the Voronoi tessellation process at eight mean grain diameters. Finite element (FE) simulations were devised at three contact pressures, typical of heavily loaded lubricated contacts, and the RCF life was determined for each set of microstructures of a given mean grain diameter. The RCF results at the eight grain diameters indicate that fatigue performance is improved exponentially with finer grain diameter. The observed life improvements from the RCF simulations resulting from grain refinement exhibit good corroboration with existing experimental results found in open literature. A single predictive fatigue life equation was constructed from this investigation’s RCF simulations to evaluate the stochastic RCF performance, given grain diameter and contact pressure, of non-conformal contacts.

References

1.
2020
,
Precedence Research Report on Bearing Market—Global Market Size, Trends Analysis, Segment Forecasts, Regional Outlook 2020–2027
.
2.
Kang
,
J. H.
,
Hosseinkhani
,
B.
, and
Rivera-Díaz-del-castillo
,
P. E. J.
,
2012
, “
Rolling Contact Fatigue in Bearings: Multiscale Overview
,”
Mater. Sci. Technol.
,
28
(
1
), pp.
44
49
.
3.
Harris
,
T. A.
,
2001
,
Rolling Bearing Analysis
,
John Wiley and Sons
,
New York
.
4.
Chiu
,
Y. P.
,
Tallian
,
T. E.
,
McCool
,
J. I.
, and
Martin
,
J. A.
,
1969
, “
A Mathematical Model of Spalling Fatigue Failure in Rolling Contact
,”
ASLE Trans.
,
12
(
2
), pp.
106
116
.
5.
Miller
,
G. R.
,
Keer
,
L. M.
, and
Cheng
,
H. S.
,
1985
, “
On the Mechanics of Fatigue Crack Growth Due To Contact Loading
,”
Proc. R. Soc. A
,
397
(
1813
), pp.
197
209
.
6.
Littmann
,
W. E.
, and
Widner
,
R. L.
,
1966
, “
Propagation of Contact Fatigue From Surface and Subsurface Origins
,”
ASME J. Fluids Eng.
,
88
(
3
), pp.
624
635
.
7.
Littmann
,
W. E.
,
1970
, “
The Mechanism of Contact Fatigue
,”
NASA Spec. Publ.
,
237
, p.
309
.
8.
Lorenz
,
S. J.
,
Sadeghi
,
F.
,
Trivedi
,
H. K.
,
Rosado
,
L.
,
Kirsch
,
M. S.
, and
Wang
,
C.
,
2021
, “
An Approach for Predicting Failure Mechanism in Rough Surface Rolling Contact Fatigue
,”
Tribol. Int.
,
158
, p.
106923
.
9.
Walvekar
,
A. A.
, and
Sadeghi
,
F.
,
2017
, “
Rolling Contact Fatigue of Case Carburized Steels
,”
Int. J. Fatigue
,
95
, pp.
264
281
.
10.
Becker
,
P. C.
,
1981
, “
Microstructural Changes Around Non-Metallic Inclusions Caused by Rolling-Contact Fatigue of Ball-Bearing Steels
,”
Met. Technol.
,
8
(
1
), pp.
234
243
.
11.
Kumar
,
A. M.
,
Hahn
,
G. T.
, and
Rubin
,
C. A.
,
1993
, “
A Study of Subsurface Crack Initiation Produced by Rolling Contact Fatigue
,”
Metall. Trans. A
,
24
(
2
), pp.
351
359
.
12.
Grabulov
,
A.
,
Petrov
,
R.
, and
Zandbergen
,
H. W.
,
2010
, “
EBSD Investigation of the Crack Initiation and TEM/FIB Analyses of the Microstructural Changes Around the Cracks Formed Under Rolling Contact Fatigue (RCF)
,”
Int. J. Fatigue
,
32
(
3
), pp.
576
583
.
13.
Sadeghi
,
F.
,
Jalalahmadi
,
B.
,
Slack
,
T. S.
,
Raje
,
N.
, and
Arakere
,
N. K.
,
2009
, “
A Review of Rolling Contact Fatigue
,”
ASME J. Tribol.
,
131
(
4
), p.
041403
.
14.
Zhou
,
R. S.
,
Cheng
,
H. S.
, and
Mura
,
T.
,
1989
, “
Micropitting in Rolling and Sliding Contact Under Mixed Lubrication
,”
ASME J. Tribol.
,
111
(4), pp.
605
613
.
15.
Chiu
,
Y. P.
,
1997
, “
The Mechanism of Bearing Surface Fatigue—Experiments and Theories
,”
Tribol. Trans.
,
40
(
4
), pp.
658
666
.
16.
Ahmed
,
R.
,
2002
, “
Rolling Contact Fatigue
,”
ASM Handbook
,
11
, pp.
941
956
.
17.
Morales-Espejel
,
G. E.
,
Gabelli
,
A.
, and
de Vries
,
A. J. C.
,
2015
, “
A Model for Rolling Bearing Life With Surface and Subsurface Survival—Tribological Effects
,”
Tribol. Trans.
,
58
(
5
), pp.
894
906
.
18.
Rycerz
,
P.
,
Olver
,
A.
, and
Kadiric
,
A.
,
2017
, “
Propagation of Surface Initiated Rolling Contact Fatigue Cracks in Bearing Steel
,”
Int. J. Fatigue
,
97
, pp.
29
38
.
19.
Querlioz
,
E.
,
Ville
,
F.
,
Lenon
,
H.
, and
Lubrecht
,
T.
,
2007
, “
Experimental Investigations on the Contact Fatigue Life Under Starved Conditions
,”
Tribol. Int.
,
40
(10–12 Spec. Iss.), pp.
1619
1626
.
20.
Höhn
,
B.-R.
,
Oster
,
P.
, and
Emmert
,
S.
,
1996
, “
Micropitting in Case-Carburized Gears-FZG Micro-Pitting Test
,”
VDI Berichte
,
1230
, pp.
331
344
.
21.
Ai
,
X.
,
1997
, “
Effect of Three-Dimensional Random Surface Roughness on Fatigue Life of a Lubricated Contact
,”
ASME J. Tribol.
,
120
(
2
), pp.
159
164
.
22.
Epstein
,
D.
,
Keer
,
L. M.
,
Wang
,
Q. J.
,
Cheng
,
H. S.
,
Zhu
,
D.
,
Jane Wang
,
Q.
, and
Cheng
,
H. S.
,
2003
, “
Effect of Surface Topography on Contact Fatigue in Mixed Lubrication
,”
Tribol. Trans.
,
46
(
4
), pp.
506
513
.
23.
Warhadpande
,
A.
, and
Sadeghi
,
F.
,
2010
, “
Effects of Surface Defects on Rolling Contact Fatigue of Heavily Loaded Lubricated Contacts
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
224
(
10
), pp.
1061
1077
.
24.
Golmohammadi
,
Z.
, and
Sadeghi
,
F.
,
2019
, “
A Coupled Multibody Finite Element Model for Investigating Effects of Surface Defects on Rolling Contact Fatigue
,”
ASME J. Tribol.
,
141
(
4
), p.
041402
.
25.
Lundberg
,
G.
, and
Palmgren
,
A.
,
1947
, “
Dynamic Capacity of Rolling Bearings
,”
Acta Polytech. Mech. Eng. Ser.
,
68
, pp.
339
341
.
26.
Ioannides
,
E.
, and
Harris
,
T. A.
,
1985
, “
A New Fatigue Life Model for Rolling Bearings
,”
ASME J. Tribol.
,
107
(
3
), pp.
367
377
.
27.
Weibull
,
W.
,
1939
, “
A Statistical Theory of Strength of Materials
,”
IVB-Handl
.
28.
Weibull
,
W.
,
1939
, “
The Phenomenon of Rupture in Solids
,”
IVA Handl.
,
153
.
29.
Liston
,
M. J. A.
,
1999
, “
RCF Life Comparison of Bearing Steels at Two Stress Levels(C)
,”
Lubr. Eng.
,
55
(
6
), pp.
12
19
.
30.
Rosado
,
L.
,
Forster
,
N. H.
,
Thompson
,
K. L.
, and
Cooke
,
J. W.
,
2010
, “
Tribology Transactions Rolling Contact Fatigue Life and Spall Propagation of AISI M50, M50NiL, and AISI 52100, Part I: Experimental Results Rolling Contact Fatigue Life and Spall Propagation of AISI M50, M50NiL, and AISI 52100, Part I: Experimental Result
,”
Tribol. Trans.
,
53
(
1
), pp.
29
41
.
31.
Lemaitre
,
J.
,
2012
,
A Course on Damage Mechanics
,
Springer Science & Business Media
.
32.
Chaboche
,
J. L.
,
1988
, “
Continuum Damage Mechanics: Part I—General Concepts
,”
ASME J. Appl. Mech.
,
55
(
1
), pp.
59
64
.
33.
Xiao
,
Y.-C. C.
,
Li
,
S.
, and
Gao
,
Z.
,
1998
, “
A Continuum Damage Mechanics Model for High Cycle Fatigue
,”
Int. J. Fatigue
,
20
(
7
), pp.
503
508
.
34.
Memon
,
I. R.
,
Zhang
,
X.
,
Cui
,
D.
,
Rasool Memon
,
I.
,
Zhang
,
X.
, and
Cui
,
D.
,
2002
, “
Fatigue Life Prediction of 3-D Problems by Damage Mechanics With Two-Block Loading
,”
Int. J. Fatigue
,
24
(
1
), pp.
29
37
.
35.
Raje
,
N.
,
Sadeghi
,
F.
,
Rateick
,
R. G.
, and
Hoeprich
,
M. R.
,
2008
, “
A Numerical Model for Life Scatter in Rolling Element Bearings
,”
ASME J. Tribol.
,
130
(
1
), p.
011011
.
36.
Jalalahmadi
,
B.
, and
Sadeghi
,
F.
,
2009
, “
A Voronoi Finite Element Study of Fatigue Life Scatter in Rolling Contacts
,”
ASME J. Tribol.
,
131
(
2
), p.
022203
.
37.
Morris
,
D.
,
Sadeghi
,
F.
,
Chen
,
Y. C.
,
Wang
,
C.
, and
Wang
,
B.
,
2019
, “
Predicting Material Performance in Rolling Contact Fatigue via Torsional Fatigue
,”
Tribol. Trans.
,
62
(
4
), pp.
614
625
.
38.
Weinzapfel
,
N.
,
Sadeghi
,
F.
,
Bakolas
,
V.
, and
Liebel
,
A.
,
2011
, “
A 3D Finite Element Study of Fatigue Life Dispersion in Rolling Line Contacts
,”
ASME J. Tribol.
,
133
(
4
), p.
042202
.
39.
Bomidi
,
J. A. R.
,
Weinzapfel
,
N.
,
Sadeghi
,
F.
,
Liebel
,
A.
, and
Weber
,
J.
,
2013
, “
An Improved Approach for 3D Rolling Contact Fatigue Simulations With Microstructure Topology
,”
Tribol. Trans.
,
56
(
3
), pp.
385
399
.
40.
Shen
,
Y.
,
Moghadam
,
S. M.
,
Sadeghi
,
F.
,
Paulson
,
K.
, and
Trice
,
R. W.
,
2015
, “
Effect of Retained Austenite—Compressive Residual Stresses on Rolling Contact Fatigue Life of Carburized AISI 8620 Steel
,”
Int. J. Fatigue
,
75
, pp.
135
144
.
41.
Vijay
,
A.
,
Paulson
,
N.
, and
Sadeghi
,
F.
,
2018
, “
A 3D Finite Element Modelling of Crystalline Anisotropy in Rolling Contact Fatigue
,”
Int. J. Fatigue
,
106
, pp.
92
102
.
42.
Vijay
,
A.
, and
Sadeghi
,
F.
,
2019
, “
A Continuum Damage Mechanics Framework for Modeling the Effect of Crystalline Anisotropy on Rolling Contact Fatigue
,”
Tribol. Int.
,
140
, p.
105845
.
43.
Lorenz
,
S. J.
,
Sadeghi
,
F.
,
Trivedi
,
H. K.
,
Rosado
,
L.
,
Kirsch
,
M. S.
, and
Wang
,
C.
,
2021
, “
A Continuum Damage Mechanics Finite Element Model for Investigating Effects of Surface Roughness on Rolling Contact Fatigue
,”
Int. J. Fatigue
,
143
, p.
105986
.
44.
Warhadpande
,
A.
,
Sadeghi
,
F.
,
Evans
,
R. D.
, and
Kotzalas
,
M. N.
,
2012
, “
Influence of Plasticity-Induced Residual Stresses on Rolling Contact Fatigue
,”
Tribol. Trans.
,
55
(
4
), pp.
422
437
.
45.
Miller
,
K. J.
,
1999
, “
A Historical Perspective of the Important Parameters of Metal Fatigue and Problems
for
the Next Century
,”
Proceedings of the 7th International Fatigue Congress (Fatigue’99)
,
July 9–10
,
Higher Education Press
, pp.
15
39
.
46.
Nygaard
,
J. R.
,
Rawson
,
M.
,
Danson
,
P.
, and
Bhadeshia
,
H. K. D. H.
,
2014
, “
Bearing Steel Microstructures After Aircraft Gas Turbine Engine Service
,”
Mater. Sci. Technol.
,
30
(
15
), pp.
1911
1918
.
47.
Nélias
,
D.
, and
Ville
,
F.
,
2000
, “
Detrimental Effects of Debris Dents on Rolling Contact Fatigue
,”
ASME J. Tribol.
,
122
(
1
), pp.
55
64
.
48.
Arakere
,
N. K.
,
2016
, “
Gigacycle Rolling Contact Fatigue of Bearing Steels: A Review
,”
Int. J. Fatigue
,
93
, pp.
238
249
.
49.
Padmanabhan
,
R.
, and
Wood
,
W. E.
,
1984
, “
Microstructural Analysis of a Multistage Heat-Treated Ultrahigh Strength Low Alloy Steel
,”
Mater. Sci. Eng.
,
66
(
2
), pp.
125
143
.
50.
Wang
,
C.
,
Wang
,
M.
,
Shi
,
J.
,
Hui
,
W.
, and
Dong
,
H.
,
2008
, “
Effect of Microstructural Refinement on the Toughness of Low Carbon Martensitic Steel
,”
Scr. Mater.
,
58
(
6
), pp.
492
495
.
51.
Santos
,
E. C.
,
Kida
,
K.
,
Honda
,
T.
,
Koike
,
H.
, and
Rozwadowska
,
J.
,
2012
, “
Fatigue Strength Improvement of Aisi E52100 Bearing Steel by Induction Heating and Repeated Quenching
,”
Mater. Sci.
,
47
(
5
), pp.
677
682
.
52.
Nakane
,
K.
,
Santos
,
E. C.
,
Honda
,
T.
,
Mizobe
,
K.
, and
Kida
,
K.
,
2014
, “
Homology Analysis of Structures of High Carbon Bearing Steel: Effect of Repeated Quenching on Prior Austenite Grain Size
,”
Mater. Res. Innovations
,
18
(
Suppl. 1
), pp.
S1-33
S1-37
.
53.
Khani Sanij
,
M. H.
,
Ghasemi Banadkouki
,
S. S.
,
Mashreghi
,
A. R.
, and
Moshrefifar
,
M.
,
2012
, “
The Effect of Single and Double Quenching and Tempering Heat Treatments on the Microstructure and Mechanical Properties of AISI 4140 Steel
,”
Mater. Des.
,
42
, pp.
339
346
.
54.
Kamiya
,
T.
,
Hashizume
,
Y.
,
Mizobe
,
K.
, and
Kida
,
K.
,
2016
, “
Effect of Repeated Quenching on Rolling Contact Fatigue Properties of JIS SUJ2 Bearing Steel
,”
Mater. Sci. Forum
,
867
, p.
60
65
.
55.
Chin
,
H. A.
,
Haluck
,
D. A.
,
Ogden
,
W. P.
, and
Moulin
,
M. A.
,
2018
, “
Case Hardening Method for High Performance Long Life Martensitic Stainless Steel Bearings
.
56.
Morris
,
J. W.
, Jr.
,
2001
, “
The Influence of Grain Size on the Mechanical Properties of Steel
.”
57.
Hall
,
E. O.
,
1951
, “
The Deformation and Ageing of Mild Steel: III Discussion of Results
,”
Proc. Phys. Soc. Sec. B
,
64
(
9
), pp.
747
753
.
58.
Petch
,
N. J.
,
1953
, “
The Cleavage Strength of Polycrystals
,”
J. Iron Steel Inst.
,
174
, pp.
25
28
.
59.
Thompson
,
A. W.
, and
Backofen
,
W. A.
,
1971
, “
The Effect of Grain Size on Fatigue
,”
Acta Metall.
,
19
(
7
), pp.
597
606
.
60.
Lukáš
,
P.
, and
Kunz
,
L.
,
1987
, “
Effect of Grain Size on the High Cycle Fatigue Behaviour of Polycrystalline Copper
,”
Mater. Sci. Eng.
,
85
, pp.
67
75
.
61.
Li
,
R. H.
,
Zhang
,
Z. J.
,
Zhang
,
P.
, and
Zhang
,
Z. F.
,
2013
, “
Improved Fatigue Properties of Ultrafine-Grained Copper Under Cyclic Torsion Loading
,”
Acta Mater.
,
61
(
15
), pp.
5857
5868
.
62.
Stickels
,
C. A.
,
1984
, “
Rolling Contact Fatigue Tests of 52100 Bearing Steel Using a Modified NASA Ball Test Rig
,”
Wear
,
98
, pp.
199
210
.
63.
Park
,
H.
,
Jung
,
S. C.
, and
Lim
,
T. W.
,
1999
, “
Development of Special Heat Treatment to Improve the Bearing Fatigue Life
,”
SAE Trans.
,
108
(
1999
), pp.
437
443
.
64.
Ooki
,
C.
,
2004
, “
Improving Rolling Contact Fatigue Life of Bearing Steels Through Grain Refinement
,”
SAE Technical Paper.
65.
Lee
,
K. O.
,
Hong
,
S. K.
,
Kang
,
Y. K.
,
Yoon
,
H. J.
, and
Kang
,
S. S.
,
2009
, “
Grain Refinement in Bearing Steels Using a Double-Quenching Heat-Treatment Process
,”
Int. J. Automot. Technol.
,
10
(
6
), pp.
697
702
.
66.
Ghodrati
,
M.
,
Ahmadian
,
M.
, and
Mirzaeifar
,
R.
,
2018
, “
Modeling of Rolling Contact Fatigue in Rails at the Microstructural Level
,”
Wear
,
406–407
, pp.
205
217
.
67.
Cao
,
Z.
,
Shi
,
Z.
,
Yu
,
F.
,
Sugimoto
,
K. I.
,
Cao
,
W.
, and
Weng
,
Y.
,
2019
, “
Effects of Double Quenching on Fatigue Properties of High Carbon Bearing Steel with Extra-High Purity
,”
Int. J. Fatigue
,
128
, p.
105176
.
68.
American Society for Testing and Materials, Standard Specification for High-Carbon Anti-Friction Bearing Steel, ASTM A295-14
.”
69.
American Society for Testing and Materials, Standard Test Methods for Determining Average Grain Size, ASTM E112-13
.”
70.
Cerullo
,
M.
,
2014
, “
Application of Dang Van Criterion to Rolling Contact Fatigue in Wind Turbine Roller Bearings Under Elastohydrodynamic Lubrication Conditions
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
228
(
12
), pp.
2079
2089
.
71.
Tallian
,
T. E.
,
1992
, “
The Failure Atlas for Hertz Contact Machine Elements
,”
Mech. Eng.
,
114
(
3
), p.
66
.
72.
Basquin
,
O. H.
,
1910
, “
The Exponential Law of Endurance Tests
,”
Proceedings of American Society for Testing and Materials
, pp.
625
630
.
73.
Styri
,
H.
,
1951
, “
Fatigue Strength of Ball Bearing Races and Heat-Treated 52100 Steel Specimens
,”
Proceedings-American Society for Testing and Materials
, p.
682
.
74.
Shimizu
,
S.
,
Tsuchiya
,
K.
, and
Tosha
,
K.
,
2009
, “
Probabilistic Stress-Life (P-S-N) Study on Bearing Steel Using Alternating Torsion Life Test
,”
Tribol. Trans.
,
52
(
6
), pp.
807
816
.
75.
Bomidi
,
J. A. R.
,
Weinzapfel
,
N.
,
Slack
,
T.
,
Moghaddam
,
S. M.
,
Sadeghi
,
F.
,
Liebel
,
A.
,
Weber
,
J.
, and
Kreis
,
T.
,
2013
, “
Experimental and Numerical Investigation of Torsion Fatigue of Bearing Steel
,”
ASME J. Tribol.
,
135
(
3
), p.
031103
.
76.
Pavlina
,
E. J.
, and
Van Tyne
,
C. J.
,
2008
, “
Correlation of Yield Strength and Tensile Strength with Hardness for Steels
,”
J. Mater. Eng. Perform.
,
17
(
6
), pp.
888
893
.
77.
Mücklich
,
F.
,
Ohser
,
J.
, and
Schneider
,
G.
,
1997
, “
Die Charakterisierung Homogener Polyedrischer Gefüge Mit Hilfe Des Räumlichen Poisson-Voronoi-Mosaiks Und Der Vergleich Zur DIN 50 601
,”
Z. Metallkd.
,
88
(
1
), pp.
27
32
.
78.
Ito
,
O.
, and
Fuller
,
E. R.
, Jr.
,
1993
, “
Computer Modelling of Anisotropic Grain Microstructure in Two Dimensions
,”
Acta Metall. Mater.
,
41
(
1
), pp.
191
198
.
79.
Zavattieri
,
P. D.
, and
Espinosa
,
H. D.
,
2001
, “
Grain Level Analysis of Crack Initiation and Propagation in Brittle Materials
,”
Acta Mater.
,
49
(
20
), pp.
4291
4311
.
80.
Andersson
,
J.
,
2005
, “
The Influence of Grain Size Variation on Metal Fatigue
,”
Int. J. Fatigue
,
27
(
8
), pp.
847
852
.
81.
Okabe
,
A.
,
Boots
,
B.
,
Sugihara
,
K.
, and
Chiu
,
S. N.
,
2009
,
Spatial Tessellations: Concepts and Applications of Voronoi Diagrams
,
John Wiley & Sons
,
New York
.
82.
Irwin
,
A. S.
,
Anderson
,
W. J.
, and
Derner
,
W. J.
,
1985
, “
Review and Critical Analysis: Rolling-Element Bearings for System Life and Reliability.
, National Aeronautics and Space Administration, Lewis Research Center.
83.
Zaretsky
,
E. V.
,
1988
, “
Selection of Rolling-Element Bearing Steels for Long-Life Applications
,”
Effect of Steel Manufacturing Processes on the Quality of Bearing Steels
,
ASTM International
.
84.
Mihailidis
,
A.
,
Retzepis
,
J.
,
Salpistis
,
C.
, and
Panajiotidis
,
K.
,
1999
, “
Calculation of Friction Coefficient and Temperature Field of Line Contacts Lubricated with a Non-Newtonian Fluid
,”
Wear
,
232
(
2
), pp.
213
220
.
85.
Mihallidis
,
A.
,
Salpistis
,
C.
,
Drivakos
,
N.
, and
Panagiotidis
,
K.
,
2003
, “
Friction Behavior of FVA Reference Mineral Oils Obtained by
a Newly Designed Two-Disk Test Rig
,”
International Conference: Power Transmissions.
86.
Slack
,
T.
, and
Sadeghi
,
F.
,
2010
, “
Explicit Finite Element Modeling of Subsurface Initiated Spalling in Rolling Contacts
,”
Tribol. Int.
,
43
(
9
), pp.
1693
1702
.
87.
Sharma
,
A.
,
Vijay
,
A.
, and
Sadeghi
,
F.
,
2021
, “
Finite Element Modeling of Fretting Wear in Anisotropic Composite Coatings: Application to HVOF Cr3C2–NiCr Coating
,”
Tribol. Int.
,
155
, p.
106765
.
88.
Harris
,
T. A.
, and
Barnsby
,
R. M.
,
2001
, “
Life Ratings for Ball and Roller Bearings
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
215
(
6
), pp.
577
595
.
89.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2006
,
Essential Concepts of Bearing Technology
,
CRC Press
.
90.
Dowson
,
D.
,
Priest
,
M.
,
Dalmaz
,
G.
, and
Lubrecht
,
A. A.
,
2003
,
Tribological Research and Design for Engineering Systems: Proceedings of the 29th Leeds-Lyon Symposium
,
Elsevier
.
91.
Longching
,
C.
,
Qing
,
C.
, and
Eryu
,
S.
,
1989
, “
Study on Initiation and Propagation Angles of Subsurface Cracks in GCr15 Bearing Steel Under Rolling Contact
,”
Wear
,
133
(
2
), pp.
205
218
.
92.
Beheshti
,
A.
, and
Khonsari
,
M. M.
,
2011
, “
On the Prediction of Fatigue Crack Initiation in Rolling/Sliding Contacts With Provision for Loading Sequence Effect
,”
Tribol. Int.
,
44
(
12
), pp.
1620
1628
.
93.
Wright
,
R. N.
,
2016
, “
Mechanical Properties of Wire and Related Testing
,”
Wire Technol.
, pp.
129
157
.
94.
Kumar
,
D.
,
Idapalapati
,
S.
,
Wang
,
W.
, and
Narasimalu
,
S.
,
2019
, “
Effect of Surface Mechanical Treatments on the Microstructure-Property-Performance of Engineering Alloys
,”
Materials
,
12
(
16
), p.
2503
.
95.
Baughman
,
R. A.
,
1960
, “
Effect of Hardness, Surface Finish, and Grain Size on Rolling-Contact Fatigue Life of M-50 Bearing Steel
.
96.
Onal
,
O.
,
Canadinc
,
D.
,
Sehitoglu
,
H.
,
Verzal
,
K.
, and
Jiang
,
Y.
,
2012
, “
Investigation of Rolling Contact Crack Initiation in Bainitic and Pearlitic Rail Steels
,”
Fatigue Fract. Eng. Mater. Struct.
,
35
(
11
), pp.
985
997
.
97.
Su
,
X.
, and
Clayton
,
P.
,
1996
, “
Surface-Initiated Rolling Contact Fatigue of Pearlitic and Low Carbon Bainitic Steels
,”
Wear
,
197
(
1–2
), pp.
137
144
.
You do not currently have access to this content.