Abstract

Several criteria for fretting wear behavior evaluation have been established since the proposal and establishment of the fretting loop concept. In this article, system deformation and system deformation ratio were defined. In addition, the fretting running conditions were distinguished from the evolution of system deformation with fretting cycles during fretting wear tests under different applied displacements and loads. In the gross slip regime, the system deformation was independent of the applied displacement and increased as the load increased, whereas in the partial slip regime, the system deformation was independent of the load and increased with the applied displacement. Furthermore, a linear relationship between the system deformation and the applied load in gross slip regime was found for the first time. Based on this linear relationship, the system deformation ratio can forecast the running regime with a given load and displacement. For the titanium alloy fretting pairs studied in this article, the fretting wear was found to run in the gross slip regime if the system deformation ratio was smaller than 0.9. Based on these observations, the system deformation ratio exhibited applicability in assisting the mechanical design of equipment suffering from fretting wear.

References

1.
Ruiz
,
C.
,
Boddington
,
P. H. B.
, and
Chen
,
K. C.
,
1984
, “
An Investigation of Fatigue and Fretting in a Dovetail Joint
,”
Exp. Mech.
,
24
(
3
), pp.
208
217
. 10.1007/BF02323167
2.
Hammouda
,
M. M. I.
,
Pasha
,
R. A.
, and
Fayed
,
A. S.
,
2007
, “
Modelling of Cracking Sites/Development in Axial Dovetail Joints of Aero-Engine Compressor Discs
,”
Int. J. Fatigue.
,
29
(
1
), pp.
30
48
. 10.1016/j.ijfatigue.2006.02.049
3.
Gallego
,
L.
, and
Nélias
,
D.
,
2007
, “
Modeling of Fretting Wear Under Gross Slip and Partial Slip Conditions
,”
ASME J. Tribol.
,
129
(
3
), pp.
528
535
. 10.1115/1.2736436
4.
Fridrici
,
V.
,
Fouvry
,
S.
, and
Kapsa
,
P.
,
2003
, “
Fretting Wear Behavior of a Cu–Ni–In Plasma Coating
,”
Surf. Coat. Technol.
,
163–164
, pp.
429
434
. 10.1016/S0257-8972(02)00639-4
5.
Mindlin
,
R. D.
,
1949
, “
Compliance of Elastic Bodies in Contact
,”
J. Appl. Mech.
,
16
(
3
), pp.
259
268
.
6.
Meng
,
H. C.
, and
Ludema
,
K. C.
,
1995
, “
Wear Models and Predictive Equations: Their Form and Content
,”
Wear
,
181–183
, pp.
443
457
. 10.1016/0043-1648(95)90158-2
7.
Yue
,
T.
, and
Wahab
,
M. A.
,
2019
, “
A Review on Fretting Wear Mechanisms, Models and Numerical Analyses
,”
CMC Comput. Mat. Contin.
,
59
(
2
), pp.
405
432
. 10.32604/cmc.2019.04253
8.
Uhlig
,
H. H.
,
1954
, “
Mechanism of Fretting Corrosion
,”
ASME J. Appl. Mech.
,
21
(
4
), pp.
401
407
.
9.
Godet
,
M.
,
1984
, “
The Third-Body Approach: A Mechanical View of Wear
,”
Wear
,
100
(
1
), pp.
437
452
. 10.1016/0043-1648(84)90025-5
10.
Godet
,
M.
,
1990
, “
Third-Bodies in Tribology
,”
Wear
,
136
(
1
), pp.
29
45
. 10.1016/0043-1648(90)90070-Q
11.
Fillot
,
N.
,
Iordanoff
,
I.
, and
Berthier
,
Y.
,
2007
, “
Wear Modeling and the Third Body Concept
,”
Wear
,
262
(
7
), pp.
949
957
. 10.1016/j.wear.2006.10.011
12.
Berthier
,
Y.
,
1990
, “
Experimental Evidence for Friction and Wear Modelling
,”
Wear
,
139
(
1
), pp.
77
92
. 10.1016/0043-1648(90)90210-2
13.
Sauger
,
E.
,
Fouvry
,
S.
,
Ponsonnet
,
L.
,
Kapsa
,
P.
,
Martin
,
J. M.
, and
Vincent
,
L.
,
2000
, “
Tribologically Transformed Structure in Fretting
,”
Wear
,
245
(
1
), pp.
39
52
. 10.1016/S0043-1648(00)00464-6
14.
Yue
,
T.
, and
Wahab
,
M. A.
,
2016
, “
A Numerical Study on the Effect of Debris Layer on Fretting Wear
,”
Materials
,
9
(
7
).
15.
Fouvry
,
S.
,
Paulin
,
C.
, and
Deyber
,
S.
,
2009
, “
Impact of Contact Size and Complex Gross-Partial Slip Conditions on Ti-6Al-4V/Ti-6Al-4V Fretting Wear
,”
Tribol. Int.
,
42
(
3
), pp.
461
474
. 10.1016/j.triboint.2008.08.005
16.
Fouvry
,
S.
,
Duó
,
P.
, and
Perruchaut
,
P.
,
2004
, “
A Quantitative Approach of Ti–6Al–4V Fretting Damage: Friction, Wear and Crack Nucleation
,”
Wear
,
257
(
9
), pp.
916
929
. 10.1016/j.wear.2004.05.011
17.
Fouvry
,
S.
,
Liskiewicz
,
T.
,
Kapsa
,
P.
,
Hannel
,
S.
, and
Sauger
,
E.
,
2003
, “
An Energy Description of Wear Mechanisms and Its Applications to Oscillating Sliding Contacts
,”
Wear
,
255
(
1
), pp.
287
298
. 10.1016/S0043-1648(03)00117-0
18.
Heredia
,
S.
, and
Fouvry
,
S.
,
2010
, “
Introduction of a New Sliding Regime Criterion to Quantify Partial, Mixed and Gross Slip Fretting Regimes: Correlation With Wear and Cracking Processes
,”
Wear
,
269
(
7
), pp.
515
524
. 10.1016/j.wear.2010.05.002
19.
Fouvry
,
S.
,
Kapsa
,
P.
, and
Vincent
,
L.
,
1995
, “
Analysis of Sliding Behaviour for Fretting Loadings: Determination of Transition Criteria
,”
Wear
,
185
(
1
), pp.
35
46
. 10.1016/0043-1648(94)06582-9
20.
Varenberg
,
M.
,
Etsion
,
I.
, and
Halperin
,
G.
,
2004
, “
Slip Index: A New Unified Approach to Fretting
,”
Tribol. Lett.
,
17
(
3
), pp.
569
573
. 10.1023/B:TRIL.0000044506.98760.f9
21.
Wang
,
J.
,
Duan
,
D.
,
Xue
,
W.
,
Gao
,
S.
, and
Li
,
S.
,
2020
, “
Ti-6Al-4V Fretting Wear and a Quantitative Indicator for Fretting Regime Evaluation
,”
Proc. Inst. Mech. Eng., Part J
. 10.1177/1350650120933115
22.
Wang
,
S.
,
Yue
,
T.
, and
Wahab
,
M. A.
,
2020
, “
Multiscale Analysis of the Effect of Debris on Fretting Wear Process Using a Semi-Concurrent Method
,”
CMC Comput. Mat. Contin.
,
62
(
1
), pp.
17
35
. 10.32604/cmc.2020.07790
23.
Yue
,
T.
, and
Abdel Wahab
,
M.
,
2014
, “
Finite Element Analysis of Stress Singularity in Partial Slip and Gross Sliding Regimes in Fretting Wear
,”
Wear
,
321
, pp.
53
63
. 10.1016/j.wear.2014.09.008
24.
Pereira
,
K.
,
Yue
,
T.
, and
Wahab
,
M. A.
,
2017
, “
Multiscale Analysis of the Effect of Roughness on Fretting Wear
,”
Tribol. Int.
,
110
, pp.
222
231
. 10.1016/j.triboint.2017.02.024
25.
Yue
,
T.
, and
Abdel Wahab
,
M.
,
2017
, “
Finite Element Analysis of Fretting Wear Under Variable Coefficient of Friction and Different Contact Regimes
,”
Tribol. Int.
,
107
, pp.
274
282
. 10.1016/j.triboint.2016.11.044
26.
Hertz
,
H.
,
1882
, “
On the Contact of Elastic Solids
,”
J. Reine Angew. Math
,
92
, pp.
156
171
.
27.
Pearson
,
S. R.
, and
Shipway
,
P. H.
,
2015
, “
Is the Wear Coefficient Dependent Upon Slip Amplitude in Fretting? Vingsbo and Söderberg Revisited
,”
Wear
,
330–331
, pp.
93
102
. 10.1016/j.wear.2014.11.005
28.
Yu
,
S. R.
,
Bai
,
L. R.
,
Jin
,
P. F.
, and
Song
,
W.
,
2018
, “
Effect of Counterpart Materials on Fretting Wear Behavior of TC4 Titanium Alloy
,”
Lubr. Eng.
,
43
(
8
), pp.
14
18
.
29.
Kang
,
J.
,
Wang
,
M.
,
Yue
,
W.
,
Fu
,
Z.
,
Zhu
,
L.
,
She
,
D.
, and
Wang
,
C.
,
2019
, “
Tribological Behavior of Titanium Alloy Treated by Nitriding and Surface Texturing Composite Technology
,”
Materials
,
12
(
2
). 10.3390/ma12020301
30.
Ding
,
H. H.
,
Fridrici
,
V.
,
Geringer
,
J.
,
Fontaine
,
J.
, and
Kapsa
,
P.
,
2019
, “
Low-Friction Study Between Diamond-Like Carbon Coating and Ti6Al4V Under Fretting Conditions
,”
Tribol. Int.
,
135
, pp.
368
388
. 10.1016/j.triboint.2019.03.026
31.
Zhang
,
X. Y.
,
Cai
,
Z. B.
,
Peng
,
J. F.
,
Liu
,
J. H.
, and
Ren
,
P. D.
,
2018
, “
Experimental Study of the Fretting Wear Behavior of Inconel 690 Alloy Under Alternating Load Conditions
,”
Proc. Inst. Mech. Eng., Part J
,
232
(
11
), pp.
1343
1351
. 10.1177/1350650117750790
You do not currently have access to this content.