Abstract
The performances of the tribo-pairs are greatly influenced by introducing the grooved surfaces. Developments of the newer type of lubricants have made a great impact on the performance of fluid film bearings. This article investigates the non-Newtonian behavior of electrorheological lubricant on the performance of grooved hybrid spherical journal bearing. The effect of different arrangements of grooves, i.e., partially grooved or fully grooved on the bearing surface, has been studied. The finite element method is used to numerically simulate the results. Furthermore, a parametric study is performed for optimizing the groove attributes. The present work demonstrates that the different grooved arrangements have a substantial influence on the bearing performance. It is revealed that the provision of grooves on the bearing surface decreases frictional losses and enhances the stiffness coefficients of the bearing. Furthermore, numerically simulated results indicate that the electrorheological lubricant enhances the value of minimum fluid film thickness and the stiffness coefficients of spherical hybrid journal bearing. Improved bearing performance can be achieved by using the optimized grooved attributes together with the electrorheological lubricant.