Abstract

Deformability of hydrostatic bearings could potentially increase their application range significantly. When a bearing is made compliant, the film pressure starts to influence the deformation of the support itself. This effect, called compliant-hydrostatic pre-loading, is especially crucial to take into account when designing highly deformable hydrostatic bearings. This work introduces the principle of pressure profile matching to minimize the effect of this pre-loading. A two-dimensional design model is introduced to determine the performance of such an elastic bearing utilizing stiffness profile matching. Additionally, an extension to the model is presented to analyze the basic performance of these type of bearings over small counter surface eccentricities. Finally, an embodiment of such a material distribution is presented utilizing functionally graded materials. These embodiments are analyzed with respect to their failure behavior, showing an improved shear stress and strain energy density distribution with the functionally graded supports when compared with conventional elastic supports.

References

1.
Van Beek
,
A.
, and
Segal
,
A.
,
1997
, “
Rubber Supported Hydrostatic Thrust Bearings With Rigid Bearing Surfaces
,”
Tribol. Int.
,
30
(
1
), pp.
47
52
. 10.1016/0301-679X(96)00021-7
2.
Van Ostayen
,
R. A.
,
Van Beek
,
A.
, and
Ros
,
M.
,
2004
, “
A Parametric Study of the Hydro-Support
,”
Tribol. Int.
,
37
(
8
), pp.
617
625
. 10.1016/j.triboint.2004.01.009
3.
Beek
,
A. V.
, and
Lepic
,
L.
,
1996
, “
Rubber Supported Hydrostatic Thrust Bearing With Elastic Bearing Surfaces of Infinite Length
,”
Wear
,
201
(1–2), pp.
45
50
. 10.1016/S0043-1648(96)06987-6
4.
Liang
,
X.
,
Yan
,
X.
,
Ouyang
,
W.
,
Wood
,
R. J.
, and
Liu
,
Z.
,
2019
, “
Thermo-Elasto-Hydrodynamic Analysis and Optimization of Rubber-Supported Water-Lubricated Thrust Bearings With Polymer Coated Pads
,”
Tribol. Int.
,
138
, pp.
365
379
. 10.1016/j.triboint.2019.06.012
5.
Branagan
,
M.
,
Griffin
,
D.
,
Goyne
,
C.
, and
Untaroiu
,
A.
,
2015
, “
Compliant Gas Foil Bearings and Analysis Tools
,”
ASME J. Eng. Gas Turbines Power
,
138
(
5
), p.
054001
. 10.1115/1.4031628
6.
Hooke
,
C. J.
,
1997
, “
Elastohydrodynamic Lubrication of Soft Solids
,”
Tribol. Ser.
,
32
, pp.
185
197
.
7.
Nijssen
,
J.
,
Kempenaar
,
A.
, and
Diepeveen
,
N.
,
2018
, “
Development of An Interface Between a Plunger and An Eccentric Running Track for a Low-Speed Seawater Pump
,”
Fluid Power Networks: Proceedings 11th International Fluid Power Conference
,
Aachen, Germany
,
Mar. 19–21
, pp.
370
379
. 10.18154/RWTH-2018-224521
8.
Howell
,
L.
,
2001
,
Compliant Mechanisms
,
Wiley & Sons
,
New York
.
9.
Stachowiak
,
G.
, and
Batchelor
,
A.
,
1993
,
Engineering Tribology
,
Elsevier
,
Amsterdam
.
10.
Rowe
,
W. B.
,
2013
,
Hydrostatic, Aerostatic and Hybrid Bearing Design
, 1st ed.,
Elsevier
,
Amsterdam
.
11.
Holzapfel
,
G.
,
2000
,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
New York
.
12.
Evans
,
H. P.
, and
Snidle
,
R. W.
,
1981
, “
Inverse Solution of Reynolds’ Equation of Lubrication Under Point-Contact Elastohydrodynamic Conditions
,”
ASME J. Tribol.
,
103
(
4
), pp.
539
546
. 10.1115/1.3251733
13.
Seabra
,
J.
, and
Bearthe
,
D.
,
1989
, “
Elastohydrodynamic Point Contacts Part 1: Formulation and Numerical Solution
,”
Wear
,
130
(
2
), pp.
301
318
. 10.1016/0043-1648(89)90185-3
14.
Blok
,
H.
,
1963
, “
Inverse Problems in Hydrodynamic Lubrication and Design Directives for Lubricated Flexure Surfaces
,”
Proc. Int. Symp. Lubr. and Wear.
,
D.
Muster
, and
B.
Sternlicht
, eds., Houston, TX, pp.
74
83
.
15.
Timoshenko
,
S.
, and
Gere
,
J.
,
1981
,
Theory of Elastic Stability
, 2nd ed.,
McGraw-Hill
,
New York
.
16.
Doddamani
,
M. R.
, and
Kulkarni
,
S. M.
,
2012
, “
Response of Fly Ash-Reinforced Functionally Graded Rubber Composites Subjected to Mechanical Loading
,”
Mech. Compos. Mater.
,
48
(
1
), pp.
89
100
. 10.1007/s11029-012-9254-x
17.
El-Galy
,
I. M.
,
Saleh
,
B. I.
, and
Ahmed
,
M. H.
,
2019
, “
Functionally Graded Materials Classifications and Development Trends From Industrial Point of View
,”
SN Appl. Sci.
,
1
(
11
), pp.
1
23
. 10.1007/s42452-019-1413-4
18.
Fadhil
,
A.
,
Al-Kawaz
,
A.
, and
Ehsan
,
A.
,
2018
, “
Numerical and Experimental Investigation of Functionally Graded Rubber-Nano-Composite Core for Sandwich Structure
,”
Int. J. Civil Eng. Technol.
,
9
(
13
), pp.
199
206
.
19.
Udupa
,
G.
,
Rao
,
S. S.
, and
Gangadharan
,
K.
,
2014
, “
Functionally Graded Composite Materials: An Overview
,”
Procedia Mater. Sci.
,
5
, pp.
1291
1299
. 10.1016/j.mspro.2014.07.442
20.
Chi
,
S. H.
, and
Chung
,
Y. L.
,
2006
, “
Mechanical Behavior of Functionally Graded Material Plates Under Transverse Load-Part II: Numerical Results
,”
Int. J. Solids Struct.
,
43
(
13
), pp.
3675
3691
. 10.1016/j.ijsolstr.2005.04.010
21.
Boulenouar
,
A.
,
Benseddiq
,
N.
,
Merzoug
,
M.
,
Benamara
,
N.
, and
Mazari
,
M.
,
2016
, “
A Strain Energy Density Theory for Mixed Mode Crack Propagation in Rubber-Like Materials
,”
J. Theor. Appl. Mech. (Mode I)
,
54
(
4
), pp.
1417
1431
. 10.15632/jtam-pl.54.4.1417
22.
Ansarifar
,
A.
, and
Lake
,
G.
,
1995
, “
On The Mechanics of Rubber-to-Metal Bond Failure
,”
J. Adhes.
,
53
(
3–4
), pp.
183
199
. 10.1080/00218469508009938
23.
Li
,
Q.
,
2001
, “
Strain Energy Density Failure Criterion
,”
Int. J. Solids Struct.
,
28
, pp.
6997
7013
. 10.1016/S0020-7683(01)00005-1
24.
Hamdi
,
A.
,
Naït Abdelaziz
,
M.
,
Aït Hocine
,
N.
,
Heuillet
,
P.
, and
Benseddiq
,
N.
,
2006
, “
A Fracture Criterion of Rubber-Like Materials Under Plane Stress Conditions
,”
Polym. Test.
,
25
(
8
), pp.
994
1005
. 10.1016/j.polymertesting.2006.06.005
25.
Horgan
,
C. O.
, and
Chan
,
A. M.
,
1999
, “
Pressurized Hollow Cylinder or Disk Problem for Functionally Graded Isotropic Linearly Elastic Materials
,”
J. Elast.
,
55
(
1
), pp.
43
59
. 10.1023/A:1007625401963
26.
Groth
,
H. L.
,
1988
, “
Stress Singularities and Fracture at Interface Corners in Bonded Joints
,”
Int. J. Adhes. Adhes.
,
8
(
2
), pp.
107
113
. 10.1016/0143-7496(88)90031-0
27.
Gleich
,
D. M.
,
Van Tooren
,
M. J. L.
, and
Beukers
,
A.
,
2001
, “
A Stress Singularity Approach to Failure Initiation in a Bonded Joint With Varying Bondline Thickness
,”
J. Adhes. Sci. Technol.
,
15
(
10
), pp.
1247
1259
. 10.1163/156856101317048734
You do not currently have access to this content.