In the present study, tribological properties of castor oil have been investigated with and/or without use of additives by using four-ball tester. In the base castor oil, calcium–copper–titanate nanoparticles (CCTO) and zinc dialkyldithiophosphate (ZDDP) were added in different concentrations (i.e., 0.1, 0.25, 0.5, and 1.0 w/v%) to study their individual effect on tribological performance. Tribological test results have shown that there is an improvement in the antiwear, extreme-pressure (EP) properties at 0.25 and 1.0 w/v% for both the additives, respectively. However, in the coefficient of friction (COF) test (incipient seizure load), an optimum concentration of 0.5 w/v% was observed for ZDDP additive, whereas CCTO nanoparticles have shown similar level of performance at all concentrations. The worn-out surfaces were analyzed by using different analytical tools.

References

1.
Feng
,
N.
,
Yi
,
X.
,
Binshi
,
X.
,
Fei
,
G.
,
Yixiong
,
W.
, and
Zhuguo
,
L.
,
2015
, “
Tribological Behaviors and Wear Mechanisms of Ultrafine Magnesium Aluminum Silicate Powders as Lubricant Additive
,”
Tribol. Int.
,
81
, pp.
199
208
.
2.
Stachowiak
,
G. W.
, and
Batchelor
,
A. W.
,
2001
,
Engineering Tribology
,
Butterworth–Heinemann Publication
,
Oxford, UK
.
3.
Nagendramma
,
P.
, and
Kaul
,
S.
,
2012
, “
Development of Ecofriendly/Biodegradable Lubricant: An Overview
,”
Renewable Sustainable Energy Rev.
,
16
(
1
), pp.
764
774
.
4.
Trajano
,
M. F.
,
Moura
,
E. I. F.
,
Ribeiro
,
K. S. B.
, and
Alves
,
S. M.
,
2014
, “
Study of Oxide Nanoparticles as Additives for Vegetable Lubricants
,”
Mater. Res.
,
17
(
5
), pp.
1124
1128
.
5.
Thottackkad
,
M. V.
,
Perikinalil
,
R. K.
, and
Kumarapillai
,
P. N.
,
2012
, “
Experimental Evaluation on the Tribological Properties of Coconut Oil by the Addition of CuO Nanoparticles
,”
Int. J. Precis. Eng. Manuf.
,
13
(
1
), pp.
111
116
.
6.
Quinchia
,
L. A.
,
Delgado
,
M. A.
,
Reddyhoff
,
T.
,
Gallegos
,
C.
, and
Spikes
,
H. A.
,
2014
, “
Tribological Studies of Potential Vegetable Oil-Based Lubricants Containing Environmentally Friendly Viscosity Modifiers
,”
Tribol. Int.
,
69
, pp.
110
117
.
7.
Maleque
,
M. A.
,
Masjuki
,
H. H.
, and
Sapuan
,
S. M.
,
2003
, “
Vegetable-Based Biodegradable Lubricating Oil Additives
,”
Ind. Lubr. Tribol.
,
55
(
3
), pp.
137
143
.
8.
Hsien
,
W. L. Y.
,
2015
, “
Utilization of Vegetable Oil as Bio-Lubricant and Additive
,”
Towards Green Lubrication in Machining
,
Springer
,
Singapore
, pp.
7
17
.
9.
Garcés
,
R.
,
Force
,
E. M.
, and
Salas
,
J. J.
,
2011
, “
Vegetable Oil Base Stocks for Lubricants
,”
Grasas Aceites
,
62
(
1
), pp.
21
28
.
10.
Fox
,
N. J.
, and
Stachowiak
,
G. W.
,
2007
, “
Vegetable Oil-Based Lubricants—A Review of Oxidation
,”
Tribol. Int.
,
40
(
7
), pp.
1035
1046
.
11.
Mobarak
,
H. M.
,
Mohamad
,
E. N.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Mahmud
,
K. A. H.
,
Habibullah
,
M.
, and
Ashraful
,
A. M.
,
2014
, “
The Prospects of Biolubricants as Alternative in Automobile Applications
,”
Renewable Sustainable Energy Rev.
,
33
, pp.
34
43
.
12.
Yu
,
W.
, and
Xie
,
H.
,
2012
, “
A Review on Nanofluids: Preparation, Stability Mechanism and Applications
,”
J. Nanomater.
,
2012
, p.
435873
.
13.
Hao
,
L.
,
Li
,
F.
,
Xu
,
X.
, and
Ren
,
T.
,
2012
, “
Preparation and Tribological Properties of a Kind of Lubricant Containing Calcium Borate Nanoparticles as Additives
,”
Ind. Lubr. Tribol.
,
64
(
1
), pp.
16
22
.
14.
Zhang
,
Y.
,
Yan
,
J.
,
Yu
,
L.
, and
Zhang
,
P.
,
2010
, “
Effect of Nano–Cu Lubrication Additive on the Contact Fatigue Behavior of Steel
,”
Tribol Lett
,
37
(
2
), pp.
203
207
.
15.
Luo
,
T.
,
Wei
,
X.
,
Huang
,
X.
,
Huang
,
L.
, and
Yang
,
F.
,
2014
, “
Tribological Properties of Al2O3 Nanoparticles as Lubricating Oil Additives
,”
Ceram. Int.
,
40
(
5
), pp.
7143
7149
.
16.
Greenberg
,
R.
,
Halperin
,
G.
,
Etsion
,
I.
, and
Tenne
,
R.
,
2004
, “
The Effect of WS2 Nanoparticles on Friction Reduction in Various Lubrication Regimes
,”
Tribol. Lett.
,
17
(
2
), pp.
179
186
.
17.
Ma
,
S.
,
Zheng
,
S.
,
Cao
,
D.
, and
Guo
,
H.
,
2010
, “
Anti-Wear and Friction Performance of ZrO2 Nanoparticles as Lubricant Additive
,”
Particuology
,
8
(
5
), pp.
468
472
.
18.
Huang
,
H. D.
,
Tu
,
J. P.
,
Gan
,
L. P.
, and
Li
,
C. Z.
,
2006
, “
An Investigation on Tribological Properties of Graphite Nanosheets as Oil Additive
,”
Wear
,
261
(
2
), pp.
140
144
.
19.
Battez
,
A. H.
,
González
,
R.
,
Viesca
,
J. L.
,
Fernández
,
J. E.
,
Fernández
,
J. M. D.
,
Machado
,
A.
,
Chou
,
R.
, and
Riba
,
J.
,
2008
, “
CuO, ZrO2 and ZnO Nanoparticles as Antiwear Additive in Oil Lubricants
,”
Wear
,
265
(3–4), pp.
422
428
.
20.
Dubey
,
M. K.
,
Bijwe
,
J.
, and
Ramakumar
,
S. S. V.
,
2013
, “
PTFE Based Nano-Lubricants
,”
Wear
,
306
(1–2), pp.
80
88
.
21.
Jeng
,
Y. R.
,
Huang
,
Y. H.
,
Tsai
,
P. C.
, and
Hwang
,
G. L.
,
2014
, “
Tribological Properties of Carbon Nanocapsule Particles as Lubricant Additive
,”
ASME J. Tribol.
,
136
(
4
), p.
041801
.
22.
Marko
,
M.
,
Kyle
,
J.
,
Branson
,
B.
, and
Terrell
,
E.
,
2015
, “
Tribological Improvements of Dispersed Nanodiamond Additives in Lubricating Mineral Oil
,”
ASME J. Tribol.
,
137
, p.
011802
.
23.
Yan
,
J.
,
Zeng
,
X.
,
Heide
,
E. V. D.
, and
Ren
,
T.
,
2014
, “
The Tribological Performance and Tribochemical Analysis of Novel Borate Esters as Lubricant Additives in Rapeseed Oil
,”
Tribol. Int.
,
71
, pp.
149
157
.
24.
Vidal
,
F. A. C.
, and
Àvila
,
A. F.
,
2014
, “
Tribological Investigation of Nanographite Platelets as Additive in Anti-Wear Lubricant: A Top-Down Approach
,”
ASME J. Tribol.
,
136
(
3
), p.
031603
.
25.
Gao
,
C.
,
Wang
,
Y.
,
Hu
,
D.
,
Pan
,
Z.
, and
Xiang
,
L.
,
2013
, “
Tribological Properties of Magnetite Nanoparticles With Various Morphologies as Lubricating Additives
,”
J. Nanopart. Res.
,
15
(
3
), pp.
1502
1511
.
26.
Peng
,
D. X.
,
Kang
,
Y.
,
Hwang
,
R. M.
,
Shyr
,
S. S.
, and
Chang
,
Y. P.
,
2009
, “
Tribological Properties of Diamond and SiO2 Nanoparticles Added in Paraffin
,”
Tribol. Int.
,
42
(
6
), pp.
911
917
.
27.
Yang
,
G. B.
,
Chai
,
S. T.
,
Xiong
,
X. J.
,
Zhang
,
S. M.
,
Yu
,
L. G.
, and
Zhang
,
P. Y.
,
2012
, “
Preparation and Tribological Properties of Surface Modified Cu Nanoparticles
,”
Trans. Nonferrous Met. Soc. Chin.
,
22
(
2
), pp.
366
372
.
28.
Choi
,
Y.
,
Lee
,
C.
,
Hwang
,
Y.
,
Park
,
M.
,
Lee
,
J.
,
Choi
,
C.
, and
Jung
,
M.
,
2009
, “
Tribological Behavior of Copper Nanoparticles as Additives in Oil
,”
Curr. Appl. Phys.
,
9
(
2
), pp.
e124
e127
.
29.
Alves
,
S. M.
,
Barros
,
B. S.
,
Trajano
,
M. F.
,
Ribeiro
,
K. S. B.
, and
Moura
,
E.
,
2013
, “
Tribological Behavior of Vegetable Oil-Based Lubricants With Nanoparticles of Oxides in Boundary Lubrication Conditions
,”
Tribol. Int.
,
65
, pp.
28
36
.
30.
Yu
,
L.
,
Zhang
,
L.
,
Ye
,
F.
,
Sun
,
M.
,
Cheng
,
X.
, and
Diao
,
G.
,
2012
, “
Preparation and Tribological Properties of Surface-Modified Nano-Y2O3 as Additive in Liquid Paraffin
,”
Appl. Surf. Science
,
263
, pp.
655
659
.
31.
Qi
,
X.
,
Jia
,
Z.
,
Yang
,
Y.
, and
Fan
,
B.
,
2011
, “
Characterization and Auto-Restoration Mechanism of Nanoscale Serpentine Powder as Lubricating Oil Additive Under High Temperature
,”
Tribol. Int.
,
44
(7–8), pp.
805
810
.
32.
Qi
,
X.
,
Lu
,
L.
,
Jia
,
Z.
,
Yang
,
Y.
, and
Liu
,
H.
,
2012
, “
Comparative Tribological Properties of Magnesium Hexasilicate and Serpentine Powder as Lubricating Oil Additives Under High Temperature
,”
Tribol. Int.
,
49
, pp.
53
57
.
33.
Yu
,
H.
,
Xu
,
Y.
,
Shi
,
P.
,
Wang
,
H.
,
Zhang
,
W.
, and
Xu
,
B.
,
2011
, “
Effect of Thermal Activation on the Tribological Behaviors of Serpentine Ultrafine Powders as an Additive in Liquid Paraffin
,”
Tribol. Int.1
,
44
(
12
), pp.
1736
1741
.
34.
Tomala
,
A.
,
Naveira-Suarez
,
A.
,
Gebeshuber
, I
. C.
, and
Pasaribu
,
R.
,
2009
, “
Effect of Base Oil Polarity on Micro and Nanofriction Behavior of Base Oil + ZDDP Solutions
,”
Tribol. –Mater., Surf. Interfaces
,
3
(
4
), pp.
182
188
.
35.
Mosleh
,
M.
,
Atnafu
,
N. D.
,
Belk
,
J. H.
, and
Obles
,
O. M.
,
2009
, “
Modification of Sheet Metal Forming Fluids With Dispersed Nanoparticles for Improved Lubrication
,”
Wear
,
267
(5–8), pp.
1220
1225
.
36.
Chou
,
C. C.
, and
Lee
,
S. H.
,
2010
, “
Tribological Behavior of Nanodiamond-Dispersed Lubricants on Carbon Steels and Aluminum Alloy
,”
Wear
,
269
(11–12), pp.
757
762
.
37.
Ito
,
K.
,
Martin
,
J. M.
,
Minfray
,
C.
, and
Kato
,
K.
,
2007
, “
Formation Mechanism of a Low Friction ZDDP Tribofilm on Iron Oxide
,”
Tribol. Trans.
,
50
(
2
), pp.
211
216
.
38.
Siniawski
,
M. T.
,
Saniei
,
N.
,
Adhikari
,
B.
, and
Doezema
,
L. A.
,
2007
, “
Influence of Fatty Acid Composition on the Tribological Performance of Two Vegetable-Based Lubricants
,”
J. Synth. Lubr.
,
24
(
2
), pp.
101
110
.
39.
Reeves
,
C. J.
,
Menezes
,
P. L.
,
Jen
,
T. C.
, and
Lovell
,
M. R.
,
2015
, “
The Influence of Fatty Acids on Tribological and Thermal Properties of Natural Oils as Sustainable Biolubricants
,”
Tribol. Int.
,
90
, pp.
123
134
.
40.
Gusain
,
R.
, and
Khatri
,
O. P.
,
2013
, “
Ultrasound Assisted Shape Regulation of CuO Nanorods in Ionic Liquids and Their Use as Energy Efficient Lubricant Additives
,”
J. Mater. Chem. A
,
1
(
18
), pp.
5612
5619
.
41.
Zhang
,
L.
,
Chen
,
L.
,
Wan
,
H.
,
Chen
,
J.
, and
Zhou
,
H.
,
2011
, “
Synthesis and Tribological Properties of Stearic Acid-Modified Anatase (TiO2) Nanoparticles
,”
Tribol. Lett.
,
41
(
2
), pp.
409
416
.
42.
Caixiang
,
G. U.
,
Qingzhu
,
L. I.
,
Zhuoming
,
G. U.
, and
Guangyao
,
Z. H. U.
,
2008
, “
Study on Application of CeO2 and CaCO3 Nanoparticles in Lubricating Oil
,”
J. Rare Earths
,
26
, pp.
163
167
.
43.
Jaiswal
,
V.
,
Rastogi
,
R. B.
,
Kumar
,
R.
,
Singh
,
L.
, and
Mandal
,
K. D.
,
2014
, “
Tribological Studies of Stearic Acid-Modified CaCu2.9Zn0.1Ti4O12 Nanoparticles as Effective Zero SAPS Antiwear Lubricant Additives in Paraffin Oil
,”
J. Mater. Chem. A
,
2
(
2
), pp.
375
386
.
44.
Singh
,
L.
,
Rai
,
U. S.
, and
Mandal
,
K. D.
,
2011
,“
Preparation and Characterization of Nanostructured CaCu2.90Zn0.10Ti4O12 Ceramic
,”
Nanomater. Nanotechnol.
,
1
(
2
), pp.
59
66
.
45.
Wang
,
M. H.
,
Zhou
,
F.
,
Wang
,
Q. L.
, and
Yao
,
C.
,
2012
, “
Synthesis of CaCu3Ti4O12 Powders and Ceramics by Sol-Gel Method Using Decanedioic Acid and Its Dielectric Properties
,”
J. Central South Univ.
,
19
(
12
), pp.
3385
3389
.
46.
ASTM D4172
, Reapproved 2010, “
Standard Test Method for Wear Preventive Characteristics of Lubricating Fluid (Four-Ball Method)
,” ASTM International, West Conshohocken, PA.
47.
Zhiwei
,
L.
,
Hou
,
X.
,
Yu
,
L.
,
Zhang
,
Z.
, and
Zhang
,
P.
,
2014
, “
Preparation of Lanthanum Trifluoride Nanoparticles Surface-Capped by Tributyl Phosphate and Evaluation of Their Tribological Properties as Lubricant Additive in Liquid Paraffin
,”
Appl. Surf. Sci.
,
292
, pp.
971
977
.
48.
Ghaednia
,
H.
,
Jackson
,
R. L.
, and
Khodadadi
,
J. M.
,
2015
, “
Experimental Analysis of Stable CuO Nanoparticle Enhanced Lubricants
,”
J. Exp. Nanosci.
,
10
(
1
), pp.
1
18
.
49.
Hamrock
,
B. J.
,
Schmid
,
S. R.
, and
Jacobson
,
B. O.
,
2004
,
Fundamentals of Fluid Film Lubrication
, 2nd ed.,
Marcel Dekker
,
New York
.
50.
Stachowiak
,
G. W.
,
2005
,
Wear-Materials, Mechanism and Practice
,
Wiley
,
New York
.
51.
Ghaednia
,
H.
, and
Jackson
,
R. L.
,
2013
, “
The Effect of Nanoparticles on the Real Area of Contact, Friction, and Wear
,”
ASME J. Tribol.
,
135
(
4
), p.
041603
.
52.
Laura
,
P. P.
,
Jaime
,
T. T.
,
García
,
A.
,
Maldonado
,
D.
,
González
,
J. A.
,
Molina
,
D.
,
Palacios
,
E.
, and
Cantú
,
P.
,
2014
, “
Antiwear and Extreme Pressure Properties of Nanofluids for Industrial Applications
,”
Tribol. Trans.
,
57
, pp.
1072
1076
.
53.
ASTM D5183
, Reapproved 2011, “
Standard Test Method for Determination of the Coefficient of Friction of Lubricants Using Four Ball Wear Test Machine
,” ASTM International, West Conshohocken, PA.
54.
Vadiraj
,
A.
,
Manivasagam
,
M.
,
Kamani
,
K.
, and
Sreenivasan
,
V. S.
,
2012
, “
Effect of Nano Oil Additive Proportions on Friction and Wear Performance of Automotive Materials
,”
Tribol. Ind.
,
34
, pp.
3
10
.
You do not currently have access to this content.