In order to understand the load-carrying mechanism of thermal wedge, numerical results for a rectangular pad and a slider with parallel gaps under four types of surface boundary temperature conditions are presented. Two assumptions of rigid-solid and smooth-surface were used to exclude the effects of both thermal deformation and micro-asperity. The relation between thermal wedge and thermal boundary conditions is revealed. The load-carrying mechanism of parallel gaps is explained with the thermal wedge derived not only from the surface temperature difference (STD) as proposed by Cameron but also from the film temperature gradient (FTG) independent of STD. It is also pointed out that in numerical analysis, the very small viscosity–temperature coefficient would result in high oil temperature and therefore, the predicted loading capacity from thermal density wedge would be extremely enlarged.

References

1.
Fogg
,
A.
,
1946
, “
Fluid Film Lubrication of Parallel Thrust Surfaces
,”
Proc. Inst. Mech. Eng.
,
155
(
1
), pp.
49
67
.
2.
Ettles
,
C. M. M.
, and
Cameron
,
A.
,
1966
, “
The Action of the Parallel Surface Thrust Bearing
,”
Proc. Inst. Mech. Eng.
,
180
, pp.
177
191
.
3.
Robinson
,
C. L.
, and
Cameron
,
A.
,
1975
, “
Studies in Hydrodynamic Thrust Bearings—III: The Parallel Surface Bearing
,”
Philos. Trans. R. Soc. A.
,
278
(
1283
), pp.
385
395
.
4.
Lebeck
,
A. O.
,
1987
, “
Parallel Sliding Load Support in the Mixed Friction Regime—Part 1: the Experimental Data
,”
ASME J. Tribol.
,
109
(
1
), pp.
189
195
.
5.
Lebeck
,
A. O.
,
1987
, “
Parallel Sliding Load Support in the Mixed Friction Regime—Part 2: Evaluation of the Mechanisms
,”
ASME J. Tribol.
,
109
(
1
), pp.
196
205
.
6.
Etsion
,
I.
,
Halperin
,
G.
, and
Brizmer
,
V.
,
2004
, “
Experimental Investigation of Laser Surface Textured Parallel Thrust Bearings
,”
Tribol. Lett.
,
17
(
2
), pp.
295
300
.
7.
Sinha
,
P.
, and
Adamu
,
G.
,
2009
, “
THD Analysis for Slider Bearing With Roughness: Special Reference to Load Generation in Parallel Sliders
,”
Acta Mech.
,
207
(
1
), pp.
11
27
.
8.
Wang
,
L.
,
Wang
,
W. Z.
,
Wang
,
H.
,
Ma
,
T. B.
, and
Hu
,
Y. Z.
,
2014
, “
Numerical Analysis on the Factors Affecting the Hydrodynamic Performance for the Parallel Surfaces With Microtextures
,”
ASME J. Tribol.
,
136
(
2
), p.
021702
.
9.
Cameron
,
A.
,
1958
, “
The Viscosity Wedge
,”
ASLE Trans.
,
1
(
2
), pp.
248
253
.
10.
Cameron
,
A.
,
1966
,
The Principles of Lubrication
,
Longmans Green and Co. Ltd.
,
London
.
11.
Qu
,
S.
,
Yang
,
P.
, and
Guo
,
F.
,
2000
, “
Theoretical Investigation on the Dimple Occurrence in the Thermal EHL of Simple Sliding Steel–Glass Circular Contacts
,”
Tribol. Int.
,
33
(
1
), pp.
59
65
.
12.
Yang
,
P.
,
Qu
,
S.
,
Kaneta
,
M.
, and
Nishikawa
,
H.
,
2001
, “
Formation of Steady Dimples in Point TEHL Contacts
,”
ASME J. Tribol.
,
123
(
1
), pp.
42
49
.
13.
Kaneta
,
M.
,
Nishikawa
,
H.
,
Kameishi
,
K.
, and
Sakai
,
T.
,
1992
, “
Effects of Elastic Moduli of Contact Surfaces in Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
114
(
1
), pp.
75
80
.
14.
Yang
,
P.
, and
Kaneta
,
M.
,
2013
, “
Thermal Wedge in Lubrication
,”
Encyclopedia of Tribology
,
Q.
Wang
, and
Y.
Chung
, eds.,
Springer
,
New York
, pp.
3617
3622
.
15.
Yang
,
P.
, and
Wen
,
S.
,
1990
, “
A Generalized Reynolds Equation for Non-Newtonian Thermal Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
112
(
4
), pp.
631
636
.
16.
Houpert
,
L.
,
1985
, “
New Results of Traction Force Calculations in Elastohydrodynamic Contacts
,”
ASME J. Tribol.
,
107
(
2
), pp.
241
248
.
You do not currently have access to this content.