The formation of a ring area around the cavitation erosion pit on carbon steel is due to the cavitation erosion–corrosion. For the ultrasonic irradiation in water, both the ultrasonic cavitation and the acoustic streaming are generated. Due to the oscillation of the horn, the acoustic streaming flows from the tip of the horn to the bulk water. So far, the acoustic streaming has not been considered in previous studies on the ultrasonic cavitation erosion–corrosion. This study first reveals that the acoustic streaming noticeably affects the evolution of the nascent ring area. The mean velocity of acoustic streaming is inversely proportional to the gap (H) between the tip of the horn and the surface of the specimen. When H is 65 mm and 40 mm, the corresponding ring area is mainly composed of vertical sandwich sheets. In contrast, when H is 17 mm, the corresponding ring area is mainly composed of horizontal thin sheets. This study provides a complete picture to understand the ultrasonic cavitation erosion–corrosion on carbon steel.

References

1.
Bourne
,
N. K.
, and
Field
,
J. E.
,
1995
, “
A High Speed Photographic Study of Cavitation Damage
,”
J. Appl. Phys.
,
78
, pp.
4423
4427
.10.1063/1.359850
2.
Chen
,
H. S.
,
2009
, “
A Ring Area Formed Around the Erosion Pit on 1Cr18Ni9Ti Stainless Surface in Incipient Cavitation Erosion
,”
Wear
,
266
, pp.
884
887
.10.1016/j.wear.2008.04.066
3.
Chen
,
H. S.
,
2010
, “
Iridescent Rings Around Cavitation Erosion Pits on Surfaces of Mild Carbon Steel
,”
Wear
,
249
, pp.
602
606
.10.1016/j.wear.2010.06.007
4.
Karrab
,
S. A.
,
Doheim
,
M. A.
,
Mohammed
,
M. S.
, and
Ahmed
,
S. M.
,
2012
, “
Investigation of the Ring Area Formed Around Cavitation Erosion Pits on the Surface of Carbon Steel
,”
Tribol. Lett.
,
45
, pp.
437
444
.10.1007/s11249-011-9901-8
5.
Yan
,
D. Y.
,
Wang
,
J. D.
,
Liu
,
F. B.
, and
Chen
,
D. R.
,
2013
, “
The Generation of Nano Sandwich Sheets in Ring Areas Around Cavitation Erosion Pit on the Surface of Carbon Steel
,”
Wear
,
303
, pp.
419
425
.10.1016/j.wear.2013.03.024
6.
Schenker
,
M. C.
,
Pourquie
,
M. J.
,
Eskin
,
D. G.
, and
Boersma
,
B. J.
,
2013
, “
PIV Quantification of the Flow Induced by an Ultrasonic Horn and Numerical Modeling of the Flow and Related Processing Times
,”
Ultrason. Sonochem.
,
20
, pp.
502
509
.10.1016/j.ultsonch.2012.04.014
7.
Kumar
,
A.
,
Kumaresan
,
T.
,
Pandit
,
A. B.
, and
Joshi
,
J. B.
,
2006
, “
Characterization of Flow Phenomena Induced by Ultrasonic Horn
,”
Chem. Eng. Sci.
,
61
, pp.
7410
7420
.10.1016/j.ces.2006.08.038
8.
Sei
,
J. O.
,
Cook
,
D. C.
, and
Townsend
,
H. E.
,
1998
, “
Characterization of Iron Oxides Commonly Formed as Corrosion Products on Steel
,”
Hyperfine. Interact.
,
112
, pp.
59
65
.10.1023/A:1011076308501
9.
Zhang
,
X.
,
Xiao
,
K.
,
Dong
,
C. F.
,
Wu
,
J. S.
,
Li
,
X. G.
, and
Huang
,
Y. Z.
,
2011
, “
In situ Raman Spectroscopy Study of Corrosion Products on the Surface of Carbon Steel in Solution Containing Cl− and SO42−
,”
Eng. Fail. Anal.
,
18
, pp.
1981
1989
.10.1016/j.engfailanal.2011.03.007
10.
Borkent
,
B. M.
,
Arora
,
M.
, and
Ohi
,
C. D.
,
2007
, “
Reproducible Cavitation Activity in Water-Particle Suspensions
,”
J. Acoust. Soc. Am.
,
121
, pp.
1406
1412
.10.1121/1.2436646
You do not currently have access to this content.