An in-house solver was created in order to simulate hydrodynamic lubrication utilizing smoothed particle hydrodynamics (SPH). SPH is a meshfree, Lagrangian, particle-based method that can be used to solve continuum problems. In this study, transient hydrodynamic lubrication in a pad bearing geometry was modeled utilizing the SPH method. The results were validated by comparison to computational fluid dynamics (CFD) and an analytical solution provided by lubrication theory. Results for the pressure distribution between SPH and CFD were agreeable while lubrication theory failed to capture any inertial effects of the fluid. Velocity profile comparisons differed slightly between all three methods. However, since smoothed particle methods have been shown to have the advantage of being able to model large deformations, as well as allowing easy definitions of fluid-solid interfaces, they can be useful tools for complex problems in tribology.

References

1.
Spinato
,
F.
,
Tavner
,
P. J.
,
van Bussel
,
G. J. W.
, and
Koutoulakos
,
E.
,
2009
, “
Reliability of Wind Turbine Subassemblies
,”
IET Renewable Power Gener.
,
3
(
4
), pp.
387
401
.10.1049/iet-rpg.2008.0060
2.
Buckholz
,
R. H.
,
1986
, “
Effect of Lubricant Inertia Near the Leading Edge of a Plane Slider Bearing
,”
ASME J. Tribol.
,
109
(
1
), pp.
60
65
.10.1115/1.3261328
3.
Zhao
,
J.
,
Sadeghi
,
F.
, and
Hoeprich
,
M. H.
,
2001
, “
Analysis of EHL Circular Contact Start Up: Part I—Mixed Contact Model With Pressure and Film Thickness Results
,”
ASME J. Tribol.
,
123
(
1
), pp.
67
74
.10.1115/1.1332394
4.
Glovnea
,
R.
, and
Spikes
,
H.
,
2001
, “
Elastohydrodynamic Film Formation at the Start-Up of the Motion
,”
J. Eng. Tribol.
,
215
(
2
), pp.
125
138
.10.1243/1350650011541774
5.
Glovnea
,
R.
, and
Spikes
,
H.
,
2000
, “
The Influence of Lubricant Upon EHD Film Behavior During Sudden Halting of Motion
,”
Tribol. Trans.
,
43
(
4
), pp.
731
739
.10.1080/10402000008982402
6.
Ren
,
N.
,
Zhu
,
D.
, and
Wen
,
S.
,
1991
, “
Experimental Method for Quantitative Analysis of Transient EHL
,”
Tribol. Int.
,
24
(
4
), pp.
225
230
.10.1016/0301-679X(91)90047-D
7.
Holmes
,
M. J. A.
,
Evans
,
H. P.
, and
Snidle
,
R. W.
,
2003
, “
Comparison of Transient EHL Calculations With Start-Up Experiments
,”
Proceedings of the 29th Leeds-Lyon Symposium on Tribology, Tribology Series
,
D.
Dowson
,
M.
Priest
,
G.
Dalmaz
, and
A. A.
Lubrecht
, eds.,
Elsevier
,
New York
, pp.
79
89
.
8.
Herrebrugh
,
K.
,
1970
, “
Elastohydrodynamic Squeeze Films Between Two Cylinders in Normal Approach
,”
ASME J. Lubr. Technol.
,
92
, pp.
292
302
.10.1115/1.3451394
9.
Christensen
,
H.
,
1970
, “
Elastohydrodynamic Theory of Spherical Bodies in Normal Approach
,”
ASME J. Lubr. Technol.
,
92
, pp.
145
154
.10.1115/1.3451305
10.
Zhao
,
J.
,
Sadeghi
,
F.
, and
Hoeprich
,
M. H.
,
2001
, “
Analysis of EHL Circular Contact Start Up: Part I-Mixed Contact Model With Pressure and Film Thickness Results
,”
ASME J. Tribol.
,
123
(
1
), pp.
67
74
.10.1115/1.1332394
11.
Zhao
,
J.
, and
Sadeghi
,
F.
,
2004
, “
The Effects of a Stationary Surface Pocket on EHL Line Contact Start-Up
,”
ASME J. Tribol.
,
126
(
4
), pp.
672
680
.10.1115/1.1759342
12.
Popovici
,
G.
,
Venner
,
C.
, and
Lugt
,
P.
,
2004
, “
Effects of Load System Dynamics on the Film Thickness in EHL Contacts During Start Up
,”
ASME J. Tribol.
,
126
(
2
), pp.
258
266
.10.1115/1.1645296
13.
Higgs
,
C. F.
,
Ng
,
S. H.
,
Borucki
,
L.
,
Yoon
,
I.
, and
Danyluk
,
S.
,
2005
, “
A Mixed-Lubrication Approach to Predicting CMP Fluid Pressure Modeling and Experiments
,”
J. Electrochem. Soc.
,
152
(
3
), pp.
193
198
.10.1149/1.1855834
14.
Jin
,
X.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2005
, “
A 3D EHL Simulation of CMP: Theoretical Framework of Modeling
,”
J. Electrochem. Soc.
,
152
(
1
), pp.
7
15
.10.1149/1.1823993
15.
Li
,
S.
, and
Kahraman
,
A.
,
2010
, “
Prediction of Spur Gear Mechanical Power Losses Using a Transient Elastohydrodynamic Lubrication Model
,”
Tribol. Trans.
,
53
, pp.
554
563
.10.1080/10402000903502279
16.
Terrell
,
E. J.
, and
Higgs
,
C. F.
,
2007
, “
A Modeling Approach for Predicting the Abrasive Particle Motion During Chemical Mechanical Polishing
,”
ASME J. Tribol.
,
129
(
4
), pp.
933
941
.10.1115/1.2768614
17.
Terrell
,
E. J.
, and
Higgs
,
C. F.
, III
,
2006
, “
Hydrodynamics of Slurry Flow in Chemical Mechanical Polishing
,”
J. Electrochem. Soc.
,
153
(
6
), pp.
15
22
.10.1149/1.2188329
18.
Luan
,
Z.
, and
Khonsari
,
M. M.
,
2008
, “
A Note on the Lubricating Film in Hydrostatic Mechanical Face Seals
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
222
(J
4
), pp.
559
567
.10.1243/13506501JET344
19.
Ng
,
S. H.
,
Borucki
,
L.
,
Higgs
,
C. F.
, III
,
Yoon
,
I.
,
Osorno
,
A.
, and
Danyluk
,
S.
,
2005
, “
Tilt and Interfacial Fluid Pressure Measurements of a Disk Sliding on a Polymeric Pad
,”
ASME J. Tribol.
,
127
(
1
), pp.
198
205
.10.1115/1.1829718
20.
Patir
,
N.
, and
Cheng
,
H. S.
,
1979
, “
Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces
,”
ASME J. Lubr. Technol.
,
101
(
2
), pp.
220
230
.10.1115/1.3453329
21.
Nisson
,
B.
, and
Hansbo
,
P.
,
2010
, “
Weak Coupling of a Reynolds Model and a Stokes Model for Hydrodynamic Lubrication
,”
Int. J. Numer. Methods Fluids
,
66
, pp.
730
741
.10.1002/fld.2281
22.
Leal
,
L. G.
,
2007
,
Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes
,
Cambridge University
,
Cambridge, UK
.
23.
Bair
,
S.
, and
Qureshi
,
F.
,
2002
, “
Accurate Measurements of Pressure-Viscosity Behavior in Lubricants
,”
Tribol. Trans.
,
45
(
3
), pp.
390
390
.10.1080/10402000208982564
24.
Pinkus
,
O.
, and
Sternlicht
,
B.
,
1961
,
Theory of Hydrodynamic Lubrication
,
McGraw-Hill
,
New York
.
25.
Szeri
,
A. Z.
,
Romandi
,
A. A.
, and
Giron-Duarte
,
A.
,
1983
, “
Linear Force Coefficients for Squeeze Film Dampers
,”
ASME J. Lubr. Technol.
,
105
, pp.
326
334
.10.1115/1.3254603
26.
San Andrés
,
L.
, and
Vance
,
J. M.
,
1986
, “
Effects of Fluid Inertia and Turbulence on the Force Coefficients for Squeeze Film Dampers
,”
ASME J. Eng. Gas Turbines Power
,
108
, pp.
332
339
.10.1115/1.3239908
27.
Elrod
,
H. G.
,
Anwar
,
I.
, and
Colsher
,
R.
,
1983
, “
Transient Lubricating Films With Inertia
,”
ASME J. Lubr. Technol.
,
105
(
3
), pp.
369
374
.10.1115/1.3254613
28.
Hashimoto
,
H.
,
Wada
,
S.
, and
Sumitomo
,
M.
,
1988
, “
The Effects of Fluid Inertia Forces on the Dynamic Behavior of Short Journal Bearings in Superlaminar Flow Regime
,”
ASME J. Tribol.
,
110
(
3
), pp.
539
547
.10.1115/1.3261673
29.
Tichy
,
J.
, and
Bou-Saïd
,
B.
,
1991
, “
Hydrodynamic Lubrication and Bearing Behavior With Impulsive Loads
,”
Tribol. Trans.
,
34
(
4
), pp.
505
512
.10.1080/10402009108982063
30.
Gingold
,
R. A.
, and
Monaghan
,
J. J.
,
1977
, “
Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars
,”
Mon. Not. R. Astron. Soc.
,
181
, pp.
375
389
.
31.
Lucy
,
L. B.
,
1977
, “
Numerical Approach to Testing the Fission Hypothesis
,”
Astron. J.
,
82
, pp.
1013
1024
.10.1086/112164
32.
Antoci
,
C.
,
Gallati
,
M.
, and
Sibilla
,
S.
,
2007
, “
Numerical Simulation of Fluid-Structure Interaction by SPH
,”
Comput. Struct.
,
85
, pp.
879
890
.10.1016/j.compstruc.2007.01.002
33.
Benz
,
W.
, and
Asphaug
,
E.
,
1995
, “
Simulations of Brittle Solids Using Smooth Particle Hydrodynamics
,”
Comput. Phys. Commun.
,
87
, pp.
253
265
.10.1016/0010-4655(94)00176-3
34.
Gray
,
J. P.
,
Monaghan
,
J. J.
, and
Swift
,
R. P.
,
2001
, “
SPH Elastic Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
6641
6662
.10.1016/S0045-7825(01)00254-7
35.
Libersky
,
L. D.
,
Petschek
,
A. G.
,
Carney
,
T. C.
,
Hipp
,
J. R.
, and
Allahdadi
,
F. A.
,
1993
, “
High Strain Lagrangian Hydrodynamics
,”
J. Comput. Phys.
,
109
, pp.
67
75
.10.1006/jcph.1993.1199
36.
Monaghan
,
J. J.
,
1994
, “
Simulating Free Surface Flows With SPH
,”
J. Comput. Phys.
,
110
, pp.
399
406
.10.1006/jcph.1994.1034
37.
Morris
,
J. P.
,
Fox
,
P. J.
, and
Zhu
,
Y.
,
1997
, “
Modeling Low Reynolds Number Incompressible Flows Using SPH
,”
J. Comput. Phys.
,
136
, pp.
214
226
.10.1006/jcph.1997.5776
38.
Takeda
,
H.
,
Miyama
,
S. M.
, and
Sekiya
,
M.
,
1994
, “
Numerical Simulation of Viscous Flow by Smoothed Particle Hydrodynamics
,”
Prog. Theor. Phys.
,
92
, pp.
939
960
.10.1143/PTP.92.939
39.
Booser
,
E. R.
, and
Wilcock
,
D. F.
,
1991
, “
Hydrodynamic Lubrication
,”
Lubr. Eng.
,
47
(
8
), pp.
645
647
.
40.
Shadloo
,
M. S.
,
Zainali
,
A.
,
Sadek
,
H.
, and
Yildiz
,
M.
,
2011
, “
Improved Incompressible Smoothed Particle Hydrodynamics Method for Simulating Flow Around Bluff Bodies
,”
Comput. Methods Appl. Mech. Eng.
,
200
, pp.
1008
1020
.10.1016/j.cma.2010.12.002
41.
Liu
,
G. R.
, and
Liu
,
M. B.
,
2003
,
Smoothed Particle Hydrodynamics: A Meshfree Particle Method
,
World Scientific
,
Singapore
.
42.
Courant
,
R.
,
Friedrichs
,
K.
, and
Lewy
,
H.
,
1928
, “
Über die Partiellen Differenzengleichungen der Mathematischen Physik
,”
Mathematische Annalen
,
100
, pp.
32
74
.10.1007/BF01448839
43.
Fulk
,
D. A.
,
1994
, “
A Numerical Analysis of Smoothed Particle Hydrodynamics
,” Ph.D. thesis, Air Force Institute of Technology, Wright-Patterson AFB, OH.
44.
Hernquist
,
L.
, and
Katz
,
N.
,
1989
, “
TREESPH—A Unification of SPH With the Hierarchical Tree Method
,”
Astrophys. J., Suppl. Ser.
,
70
, pp.
419
446
.10.1086/191344
45.
Monaghan
,
J. J.
,
1982
, “
Why Particle Methods Work (Hydrodynamics)
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
,
3
, pp.
422
433
.10.1137/0903027
46.
Monaghan
,
J. J.
,
1992
, “
Smoothed Particle Hydrodynamics
,”
Annu. Rev. Astron. Astrophys.
,
30
, pp.
543
574
.10.1146/annurev.aa.30.090192.002551
47.
Monaghan
,
J. J.
, and
Lattanzio
,
J. C.
,
1985
, “
A Refined Particle Method for Astrophysical Problems
,”
Astron. Astrophys.
,
149
, pp.
135
143
.
48.
Schoenberg
,
I. J.
,
1946
, “
Contributions to the Problem of Approximation of Equidistant Data by Analytic Functions
,”
Q. Appl. Math.
,
4
, pp.
45
88
.
49.
Randles
,
P. W.
, and
Libersky
,
L. D.
,
1996
, “
Smoothed Particle Hydrodynamics Some Recent Improvements and Applications
,”
Comput. Methods Appl. Mech. Eng.
,
138
, pp.
375
408
.10.1016/S0045-7825(96)01090-0
50.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1991
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(2) pp.
335
354
.
51.
Sulsky
,
D.
,
1995
, “
The Material Point Method for Large Deformation Solid Mechanics
,”
Proceedings of the 3rd U.S. Congress on Computational Mechanics, USACM
,
Dallas, TX
.
52.
Stachowiak
,
G. W.
, and
Batchelor
,
A. W.
,
2006
,
Engineering Tribology
,
Elsevier
,
New York
.
53.
Heckelman
,
D. D.
, and
McC. Ettles
,
C. M.
,
1988
, “
Viscous and Inertial Pressure Effects at the Inlet to a Bearing Film
,”
Tribol. Trans.
,
31
(
1
), pp.
1
5
.10.1080/10402008808981791
54.
Lewicki
,
W.
,
1955
, “
Theory of Hydrodynamic Lubrication in Parallel Sliding
,”
The Engineer
,
200
, pp.
939
941
.
55.
Rodkiewicz
,
Cz. M.
,
Kim
,
K. W.
, and
Kennedy
,
J. S.
,
1990
, “
On the Significance of the Inlet Pressure Build-Up in the Design of Tilting-Pad Bearings
,”
ASME J. Tribol.
,
112
, pp.
17
22
.10.1115/1.2920224
You do not currently have access to this content.