Due to the increasing emphasis on environmental constraints, industry works on how to limit the massive use of lubricants by using the micro-pulverization of oil in machining processes and, especially, in the machining of aluminum alloys for the automotive industry. The success of a machining operation is dependent on a friction coefficient and weak adhesion with the tool-work material interface. This paper aims at identifying the influence of cutting tool substrates (high speed steel (HSS), carbide, polycrystalline diamond (PCD)) and of minimum quantity lubrication (MQL) on the friction coefficient and on adhesion in tribological conditions corresponding to the ones observed in the cutting of aluminum alloys (sliding velocity: 20-1500 m/min). An open ball-on-cylinder tribometer, especially designed to simulate these tribological conditions through Hertz contact, has been used. It has been shown that HSS and carbide substrates lead to large friction coefficients (0.8–1) and substantial adhesion in dry conditions, whereas PCD substrates would lead to lower average friction coefficient values (0.4–0.5) and very limited adhesion, which proves the necessity of using PCD tools in the dry machining of aluminum. It has also been shown that the application of MQL leads to a large decrease of the friction coefficient (0.1–0.2) and eliminates almost all traces of adhesions on pins for any substrates, which shows that MQL is an interesting compromise between dry machining and flood cooling.

References

1.
Boyer
,
H. F.
,
Waremme
,
J.
,
Bourdiol
,
J. L.
, and
Delaunay
,
D.
,
2011
, “
A Study About Energy Consumption and Cutting Fluid Used to Clutch Case Machining
,”
Mec.Ind.
,
12
(5), pp.
389
393
.10.1051/meca/2011133
2.
Braga
,
D. U.
,
Diniz
,
A. E.
,
Mirand
,
G. W. A.
, and
Coppini
,
N. L.
,
2002
, “
Using a Minimum Quantity of Lubricant (MQL) and Diamond Coated Tool in the Drilling of Aluminum Silicon Alloy
,”
J. Mater. Process. Technol.
,
122
, pp.
127
138
.10.1016/S0924-0136(01)01249-3
3.
Itoigawa
,
F.
,
Childs
,
T. H. C.
,
Nakamura
,
T.
, and
Belluco
,
W.
,
2006
, “
Effects and Mechanisms in Minimal Quantity Lubrication Machining of an Aluminum Alloy
,”
Wear
,
260
, pp.
339
344
.10.1016/j.wear.2005.03.035
4.
Bhowmick
,
S.
and
Alpas.
A. T.
,
2008
, “
Minimum Quantity Lubrication Drilling of Aluminum Silicon Alloys in Water Using Diamond Like Carbon Coated Drills
,”
Int. J. Mach. Tools Manuf.
,
48
, pp.
1429
1443
.10.1016/j.ijmachtools.2008.04.010
5.
Heinemann
,
R.
,
Hinduja
,
S.
,
Barrow
,
G.
, and
Petuelli
,
G.
,
2006
, “
Effect of MQL on the Tool Life of Small Twist Drills in Deep-Hole Drilling
,
Int. J. Mach. Tools Manuf.
,
46
, pp.
1
6
.10.1016/j.ijmachtools.2005.04.003
6.
Zhang
,
M. Z.
,
Liu
,
Y. B.
, and
Zhou
,
H.
,
2001
, “
Wear Mechanism Maps of Uncoated HSS Tools Drilling Die-Cast Aluminum Alloy
,”
Tribol. Int.
,
34
, pp.
727
731
.10.1016/S0301-679X(01)00058-5
7.
Rahman
,
M.
,
Senthil Kumar
,
A.
, and
Salam
,
M. U.
,
2002
, “
Experimental Evaluation on the Effect of Minimal Quantities of Lubricant in Milling
,”
Int. J. Mach. Tools Manuf.
,
42
, pp.
539
547
.10.1016/S0890-6955(01)00160-2
8.
Rao
,
B.
, and
Shin
,
Y. C.
,
2001
, “
Analysis on High-Speed Face-Milling of 7075-T6 Aluminum Using Carbide and Diamond Cutters
,”
Int. J. Mach. Tools. Manuf.
,
41
, pp.
1763
1781
.10.1016/S0890-6955(01)00033-5
9.
Coelho
,
R. T.
,
Yamada
,
S.
,
Aspinwall
,
D. K.
, and
Wise
,
M. L. H.
,
1995
, “
The Application of Polycrystalline Diamond (PCD) Tool Materials When Drilling and Reaming Aluminum Based Alloys Including MMC
,”
Int. J. Mach. Tools Manuf.
,
35
, pp.
761
774
.10.1016/0890-6955(95)93044-7
10.
Sreejith
,
P. S.
,
2007
, “
Machining of 6061 Aluminium Alloy With MQL—Dry and Flooded Lubricant Conditions
,”
Int. J. Mach. Tools Manuf.
,
35
, pp.
532
537
.10.1016/j.matlet.2007.05.019
11.
Wakabayashi
,
T.
and
Suda
,
S.
,
2008
, “
Environmentally Friendly Machining of Aluminum Using MQL System
,”
The 41st CIRP Conference on Manufacturing Systems
.
12.
Boyer
,
H. F.
,
Koppka
,
F.
,
Ranc
,
N.
, and
Lorong
,
P.
,
2012
, “
Identification of the Heat Input During Dry or MQL Machining
,”
Proceedings of the Ninth International Conference on High Speed Machining
, San Sebastian, Spain, pp.
44
47
.
13.
Tai
,
B. L.
,
Jessop
,
A. J.
,
Stephenson
,
D. A.
, and
Shih
,
A. J.
,
2012
, “
Workpiece Thermal Distorsion in Minimum Quantity Lubrication Deep Hole Drilling—Finite Element Modeling and Experimental Validation
,”
ASME J. Manuf. Sci. Eng.
,
134
(1), p.
011338
.10.1115/1.4005432
14.
List
,
G.
,
2004
, “
Etude Des Mécanismes d'Endommagement des Outils Carbure WC-Co par la Caractérisation de l'Interface Outil-Copeau. Application à l’Usinage à Sec de l’Alliage d’Aluminium Aéronautique AA2024 T351
,“Ph.D. thesis, Ecole Nationale Supérieure d'Arts et Métiers, Bordeaux, France.
15.
Mondelin
,
A.
,
Claudin
,
C.
,
Rech
,
J.
, and
Dumont
,
F.
,
2011
, “
Effects of Lubrication Mode on Friction at the Tool-Work Material Interface in Machining
,”
Tribol. Trans.
,
54
(
2
), pp.
247
255
.10.1080/10402004.2010.538489
16.
Ben Abdelali
,
H.
,
Courbon
,
C.
,
Rech
,
J.
,
Ben Salem
,
W.
,
Dogui
,
A.
, and
Kapsa
,
P.
,
2011
, “
Identification of a Friction Model at the Tool-Chip-Workpiece Interface in Dry Machining of a AISI 1045 Steel With TiN Coated Carbide Tool
,”
ASME J. Manuf. Sci. Eng.
,
133
(4), p.
042201
.10.1115/1.4004879
17.
Pawlak
,
Z.
,
Klamecki
,
B. E.
,
Rauckyte
,
T.
,
Shpenkov
,
G. P.
, and
Kopkowski
,
A.
,
2005
, “
The Tribo-Chemical and Micellar Aspects of Cutting Fluids
,”
Tribol. Int.
,
38
, pp.
1
4
.10.1016/j.triboint.2004.04.004
18.
Cakir
,
O.
,
Kiyak
,
M.
, and
Altan
,
E.
,
2004
, “
Comparison of Gases Applications to Wet and Dry Cuttings in Turning
,”
J. Mater. Process. Technol.
,
153-154
, pp.
35
41
.10.1016/j.jmatprotec.2004.04.190
19.
Jayal
,
A. D.
and
Balaji
,
A. K.
,
2009
, “
Effects of Cutting Fluid Application on Tool Wear in Machining: Interaction With Tool-Coatings and Tool Surface Features
,”
Wear
,
267
, pp.
1723
1730
.10.1016/j.wear.2009.06.032
20.
Vieira
,
J. M.
,
Machado
,
A. R.
, and
Ezugwu
,
E. O.
,
2001
, “
Performance of Cutting Fluids During Face Milling of Steels
,”
J. Mater. Process. Technol.
,
116
(
2-3
), pp.
244
251
.10.1016/S0924-0136(01)01010-X
21.
Kishawy
,
H. A.
,
Dumitrescu
,
M.
,
Ng
,
E. G.
, and
Elbestawi
,
M. A.
,
2005
, “
Effect of Coolant Strategy on Tool Performance, Chip Morphology and Surface Quality During High-Speed Machining of A356 Aluminum Alloy
,”
Int. J. Mach. Tools Manuf.
,
45
, pp.
219
227
.10.1016/j.ijmachtools.2004.07.003
22.
Lopez de Lacalle
,
L. N.
,
Angulo
,
C.
,
Lamikiz
,
A.
, and
Sanchez
,
J. A.
,
2006
, “
Experimental and Numerical Investigation of the Effect of Spray Cutting Fluids in High Speed Milling
,”
J. Mater. Process. Technol.
,
172
, pp.
11
15
.10.1016/j.jmatprotec.2005.08.014
23.
Claudin
,
C.
,
Mondelin
,
A.
,
Rech
,
J.
, and
Fromentin
,
G.
,
2010
, “
Influence of a Straight Oil on Friction at the Tool-Work Material Interface in Machining
,”
Int. J. Mach. Tools Manuf.
,
50
, pp.
681
688
.10.1016/j.ijmachtools.2010.04.013
24.
Dhar
,
N. R.
,
Kamruzzaman
,
M.
, and
Mahiuddin
,
A.
,
2006
, “
Effect of Minimum Quantity Lubrication (MQL) on Tool Wear and Surface Roughness in Turning AISI-4340 Steel
,”
J. Mater. Process. Technol.
,
172
, pp.
299
304
.10.1016/j.jmatprotec.2005.09.022
25.
Obikawa
,
T.
,
Asano
,
Y.
, and
Kamata
,
Y.
,
2006
, “
Computer Fluid Dynamics Analysis for Efficient Spraying of Oil Mist in Finish-Turning of Inconel 718
,”
Int. J. Mach. Tools Manuf.
,
49
, pp.
971
978
.10.1016/j.ijmachtools.2009.06.002
26.
Kamata
,
Y.
and
Obikawa
,
T.
,
2007
, “
High Speed MQL Finish-Turning of Inconel 718 With Different Coated Tools
,”
J. Mater. Process. Technol.
,
192-193
, pp
281
286
.10.1016/j.jmatprotec.2007.04.052
27.
Khan
,
M. M. A.
,
Mithu
,
M. A. H.
, and
Dhar
,
N. R.
,
2009
, “
Effects of Minimum Quantity Lubrication on Turning AISI 9310 Alloy Steel Using Vegetable Oil-Based Cutting Fluid
,”
J. Mater. Process. Technol.
,
209
, pp.
5573
5583
.10.1016/j.jmatprotec.2009.05.014
28.
Thepsonthi
,
T.
,
Hamdi
,
M.
, and
Mitsui.
K.
,
2009
, “
Investigation Into Minimal-Cutting-Fluid Application in High-Speed Milling of Hardened Steel Using Carbide Mills
,”
Int. J. Mach. Tools Manuf.
,
49
, pp.
156
162
.10.1016/j.ijmachtools.2008.09.007
29.
Bonnet
,
C.
,
Valiorgue
,
F.
,
Rech
,
J.
,
Claudin
,
C.
,
Hamdi
,
H.
,
Bergheau
,
J. M.
, and
Gilles
,
P.
,
2008
, “
Identification of a Friction Model—Application to the Context of Dry Cutting of an AISI 316L Austenitic Stainless Steel With a TiN Coated Carbide Tool
,”
Int. J. Mach. Tools Manuf.
, 48, pp.
1211
1223
.10.1016/j.ijmachtools.2008.03.011
30.
Zemzemi
,
F.
,
2007
, “
Caractérisation des Modes de Frottement aux Interfaces Pièce-Outil-Copeau: Application au cas de l'usinage des Aciers et de l’Inconel 718
,“Ph.D. thesis, Ecole Centrale de Lyon, Lyon.
31.
Hedenquist
,
P.
, and
Olsson
,
M.
,
1991
, “
Sliding Wear Testing of Coated Cutting Tools Materials
,”
Tribol. Int.
,
23
, pp.
143
150
.10.1016/0301-679X(91)90020-A
32.
Olsson
,
M.
,
Soderberg
,
S.
,
Jacobson
,
S.
, and
Hogmark
,
S.
,
1898
, “
Simulation of Cutting Tool Wear by a Modified Pin-On-Disc Test
,”
Int. J. Mach. Tools Manuf.
,
29
, pp.
377
390
.10.1016/0890-6955(89)90007-2
33.
Mabrouki
,
T.
,
Girardin
,
F.
,
Asad
,
M.
, and
Rigal
,
J. F.
,
2008
, “
Numerical and Experimental Study of Dry Cutting for an Aeronautic Aluminium Alloy (A2024-T351)
,”
Int. J. Mach. Tools Manuf.
,
48
, pp.
1187
1197
.10.1016/j.ijmachtools.2008.03.013
34.
Duchosal
,
A.
,
Leroy
,
R.
,
Vecellio
,
L.
,
Louste
,
C.
, and
Ranganathan
,
N.
,
2012
, “
An Experimental Investigation on Oil Mist Characterization used in MQL Milling Process
,”
Int. J. Adv. Manuf. Technol.
, 66(5–8), pp. 1003–1014.10.1007/s00170-012-4384-9
You do not currently have access to this content.