The influence of roughness lay directionality on scuffing failure is studied considering different roughness lay direction combinations of the contacting surfaces of a ball-on-disk contact. Using a recently developed scuffing model Li et al., (2013, “A Model to Predict Scuffing Failures of a Ball-On-Disk Contact,” Tribol. Int., 60, pp. 233–245)., the bulk temperature and flash temperature are predicted for each roughness lay combination within the load range from 0.76 GPa to 2.47 GPa in a step-wise manner under the rolling velocity of 10 m/s and slide-to-roll ratio of −0.5 to show substantial impacts of roughness lay directionality on scuffing resistance performance (SRP). It is found (i) the lay direction combination that results into contacts of asperities with small contact radii leads to increased local contact pressures and frictional heat flux, reducing SRP; (ii) the continuous asperity contact along the sliding direction leads to continuous surface temperature rise and lowers SRP; and (iii) the lubricant side leakage caused by the pressure gradient in the direction normal to the sliding direction leads to reduced SRP. With these main mechanisms in effect, the SRP of a contact decreases as the deviation between the roughness texture orientations of the two surfaces increases. The surfaces with their roughness lay directions both perpendicular to the sliding direction exhibits best SRP. The surfaces with one roughness lay direction positioned in line with the direction of sliding and the other positioned perpendicular to the sliding direction shows worst SRP.

References

1.
Li
,
S.
,
Kahraman
,
A.
,
Anderson
,
N.
, and
Wedeven
,
L.D.
,
2013
, “
A Model to Predict Scuffing Failures of a Ball-On-Disk Contact
,”
Tribol. Int.
,
60
, pp.
233
245
.10.1016/j.triboint.2012.11.007
2.
Ling
,
F.F.
,
1969
, “
On Temperature Transients at Sliding Interface
,”
ASME J. Lubr. Technol.
,
91
, pp.
397
405
.10.1115/1.3554950
3.
Qiu
,
L.
, and
Cheng
,
H.S.
,
1998
, “
Temperature Rise Simulation of Three-Dimensional Rough Surface in Mixed Lubricated Contact
,”
ASME J. Tribol.
,
120
(
2
), pp.
310
318
.10.1115/1.2834427
4.
Cioc
,
C.
,
Cioc
,
S.
,
Moraru
,
L.
,
Kahraman
,
A.
, and
Keith
,
T.G.
,
2002
, “
A Deterministic Elastohydrodynamic Lubrication Model of High-Speed Rotorcraft Transmission Components
,”
Tribol. Trans.
,
45
(
4
), pp.
556
562
.10.1080/10402000208982587
5.
Zhu
,
D.
, and
Hu
,
Y.Z.
,
2001
, “
A Computer Program Package for the Prediction of EHL and Mixed Lubrication Characteristics, Friction, Subsurface Stresses and Flash Temperatures Based on Measured 3-D Surface Roughness
,”
Tribol. Trans.
,
44
(
3
), pp.
383
390
.10.1080/10402000108982471
6.
Deolalikar
,
N.
,
Sadeghi
,
F.
, and
Marble
,
S.
,
2008
, “
Numerical Modeling of Mixed Lubrication and Flash Temperature in EHL Elliptical Contacts
,”
ASME J. Tribol.
,
130
(
1
), pp.
011004
011024
.10.1115/1.2805429
7.
Nakatsuji
,
T.
, and
Mori
,
A.
,
1998
, “
Tribological Properties of Electrolytically Polished Surfaces of Carbon Steel
,”
Tribol. Trans.
,
41
(
2
), pp.
179
188
.10.1080/10402009808983737
8.
Patching
,
M.J.
,
Kweh
,
C.C.
,
Evans
,
H.P.
, and
Snidle
,
R.W.
,
1995
, “
Conditions for Scuffing Failure of Ground and Superfinished Steel Disks at High Sliding Speeds Using a Gas Turbine Engine Oil
,”
ASME J. Tribol.
,
117
, pp.
482
489
.10.1115/1.2831279
9.
Snidle
,
R.W.
,
Dhulipalla
,
A.K.
,
Evans
,
H.P.
, and
Cooper
,
C.V.
,
2008
, “
Scuffing Performance of a Hard Coating Under EHL Conditions at Sliding Speeds up to 16 m/s and Contact Pressures up to 2.0 GPa
,”
ASME J. Tribol.
,
130
(
2
), pp.
021301
021311
.10.1115/1.2842253
10.
Jackson
,
A.
,
Webster
,
M.N.
, and
Enthoven
,
J.C.
,
1994
, “
The Effect of Lubricant Traction on Scuffing
,”
Tribol. Trans.
,
37
(
2
), pp.
387
395
.10.1080/10402009408983307
11.
Ichimaru
,
K.
,
Izumi
,
N.
,
Kimura
,
M.
, and
Kobori
,
K.
,
1992
, “
Effect of Lubricant Additives on Scoring-Proof Capability of Gear Oils
,”
JSME Int. J., Ser. III
,
35
(
4
), pp.
652
659
.
12.
Li
,
S.
, and
Kahraman
,
A.
,
2009
, “
A Mixed EHL Model With Asymmetric Integrated Control Volume Discretization
,”
Tribol. Int.
,
42
(
8
), pp.
1163
1172
.10.1016/j.triboint.2009.03.020
13.
Ehret
,
P.
,
Dowson
,
D.
, and
Taylor
,
C.M.
,
1998
, “
On Lubricant Transport Conditions in Elastohydrodynamic Conjunctions
,”
Proc. R. Soc. London, Ser. A
,
454
, pp.
763
787
.10.1098/rspa.1998.0185
14.
Kaneta
,
M.
,
1992
, “
Effects of Surface Roughness in Elastohydrodynamic Lubrication
,”
JSME Int. J., Ser. III
,
35
(
4
), pp.
535
546
.
15.
Johnson
,
K.J.
,
1985
,
Contact Mechanics
,
Cambridge University
,
Cambridge, England
.
16.
Kim
,
K.H.
, and
Sadeghi
,
F.
,
1992
, “
Three-Dimensional Temperature Distribution in EHD Lubrication. Part I: Circular Contact
,”
ASME J. Tribol.
,
114
(
1
), pp.
32
41
.10.1115/1.2920864
17.
Carslaw
,
H.S.
, and
Jaeger
,
J.C.
,
1959
,
Conduction of Heat in Solids
,
Oxford University
,
New York
.
18.
Lai
,
W.T.
, and
Cheng
,
H.S.
,
1985
, “
Temperature Analysis in Lubricated Simple Sliding Rough Contacts
,”
Tribol. Trans.
,
28
(
3
), pp.
303
312
.
19.
Li
,
S.
, and
Kahraman
,
A.
,
2010
, “
Prediction of Spur Gear Mechanical Power Losses Using a Transient Elastohydrodynamic Lubrication Model
,”
Tribol. Trans.
,
53
(
4
), pp.
554
563
.10.1080/10402000903502279
20.
Li
,
S.
, and
Kahraman
,
A.
,
2013
, “
Micro-Pitting Fatigue Lives of Lubricated Point Contacts: Experiments and Model Validation
,”
Int. J. Fatigue
,
48
, pp.
9
18
.10.1016/j.ijfatigue.2012.12.003
21.
Bair
,
S.
,
Jarzynski
,
J.
, and
Winer
,
W.O.
,
2001
, “
The Temperature, Pressure and Time Dependence of Lubricant Viscosity
,”
Tribol. Int.
,
34
(
7
), pp.
461
468
.10.1016/S0301-679X(01)00042-1
22.
Li
,
S.
, and
Kahraman
,
A.
,
2011
, “
A Method to Derive Friction and Rolling Power Loss Formulae for Mixed EHL Contacts
,”
J. Adv. Mech. Des., Syst., Manufact.
,
5
(
4
), pp.
252
263
.10.1299/jamdsm.5.252
You do not currently have access to this content.