Solution of a contact problem for a rough elastic half-plane is considered. Surface roughness is assumed to be small and stochastic. A perturbation solution of the problem for relatively small roughness with singly connected contact region is proposed and is conveniently expressed in terms of Chebyshev polynomials. Mean distribution of pressure and mean size of the contact are obtained analytically. A pitting model for rough surfaces is considered based on a generalization of an earlier proposed contact model with some stochastic parameters. An analytical formula relating subsurface originated fatigue is considered and fatigue life of rough and smooth surfaces is obtained which shows that fatigue life of rough solids is slightly shorter than of the smooth ones. In the general case of a contact region of rough surfaces with multiple connectivity subsurface originated fatigue possesses properties similar to the case of singly connected contact region. Surface roughness may have a significant effect only on surface and near surface originated fatigue such as wear, micropitting, and shallow flaking.

References

1.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
Contact of Nominally Flat Surface
,”
Proc. R. Soc. Lond., Ser. A
,
295
, pp.
300
312
.
2.
Ciavarellaa
,
M.
Delfine
,
V.
, and
Demelio
,
V. G.
, 2006, “
A ‘Re-Vitalized’ Greenwood and Williamson Model of Elastic Contact Between Fractal Surfaces
,”
J. Mech. Phys. Solids
,
54
(
12
), pp.
2569
2591
.
3.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A.D.
, 1971, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. Lond., Ser. A
,
324
, pp.
301
313
.
4.
Derjaguin
,
B. V.
,
Muller
,
V. M.
, and
Toporov
,
Y. P.
, 1975, “
Effect of Contact Deformations on the Adhesion of Particles
,”
J. Colloid Interface Sci.
,
53
(
2
), pp.
314
326
.
5.
Maugis
,
D.
, 1996, “
On the Contact and Adhesion of Rough Surfaces
,”
J. Adhes. Sci. and Technol.
,
10
, pp.
161
175
.
6.
Persson
,
B. N. J.
, and
Tosatti
,
E.
, 2001, “
The Effect of Surface Roughness on the Adhesion of Elastic Solids
,”
J. Chem. Phys.
,
115
(
12
), pp.
5597
5610
.
7.
Kalker
,
J. J.
, 1990, “
Three - Dimensional Elastic Bodies in Rolling Contact
,”
Ser. Solid Mechanics and Its Applications
,
Kluwer Academic Publisher
,
Dordrecht
.
8.
Kweh
,
C. C.
,
Evans
,
H. P.
, and
Snidle
,
R.W.
, 1989, “
Micro-Elastohydrodynamic Lubrication of an Elliptical Contact with Transverse and Three-Dimensional Roughness
,”
ASME J. Tribol.
,
111
, pp.
577
583
.
9.
Greenwood
,
J. A.
, and
Johnson
,
K. L.
, 1992, “
The Behaviour of Transverse Roughness in Sliding Elastohydrodynamically Lubricated Contacts
,”
Wear
,
153
, pp.
107
117
.
10.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
, 1994, “
Transient Analysis of Surface Features in an EHL Line Contact in the Case of Sliding
,”
ASME J. Tribol.
,
116
, pp.
186
193
.
11.
Hooke
,
C. J.
, 2000, “
The Behaviour of Low-Amplitude Surface Roughness Under Line Contacts: Non-Newtonian Fluids
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
214
, pp.
253
265
.
12.
Y.-Z.
Hu
,
H.
Wang
,
W.-Z.
Wang
, and
D.
Zhu
, 2001, “
A Computer Model of Mixed Lubrication in Point Contacts
,”
Tribology Intern.
,
34
(
1
), pp.
65
73
.
13.
Q.
Wang
,
Zhu
Dong
,
H. S.
Cheng
,
T.
Yu
,
X.
Jiang
, and
S.
Liu
, 2004, “
Mixed Lubrication Analyses by a Macro-Micro Approach and a Full-Scale Mixed EHL Model
,”
ASME J. Tribol.
,
126(1)
, pp.
81
91
.
14.
Liu
,
J.
,
McCool
,
J.
, and
Tallian
,
T. E.
, 1975, “
Dependence of Bearing Fatigue Life on Film Thickness to Surface Roughness Ratio
,”
ASLE Trans.
,
17
, pp.
144
152
.
15.
Lubrecht
,
A. A.
,
Venner
,
C. H.
,
Lane
,
S.
,
Jacobson
,
B.
, and
Ioannides
,
E.
, 1990, “
Surface Damage – Comparison of Theoretical and Experimental Endurance Lives of Rolling Bearings
,”
Proc. 1990 Japan International Tribology Conference
,
Nagoya, Japan
,
1
, pp.
185
190
.
16.
Beghini
,
E.
,
Dwyer-Joyce
,
R. S.
,
Ioannides
,
E.
, and
Jacobson
,
B.
, 1992, “
Elastic/Plastic Contact and Endurance Life Prediction
,”
J. Phys. D: Appl. Phys.
,
25
, pp.
379
383
.
17.
Tallian
,
T. E.
, 2001, “
The Use of Microcontact Pressure Statistics in Fatigue Life Modeling of Rolling Contacts
,”
STLE Tribol. Trans.
,
44
(
2
), pp.
156
158
.
18.
Qiao
,
H.
,
Evans
,
H. P.
, and
Snidle
,
R.W.
, 2006, “
Prediction of Fatigue Damage in Rough Surface EHL
,”
Proc. IUTAM Symposium on Elastohydrodynamics and Microelastohydrodynamics
, Chap. 10, pp.
345
356
.
19.
Galin
,
L.A.
, 1980,
Contact Problems in Elasticity and Visco - Elasticity
,
Nauka Publishing
,
Moscow, Russia
.
20.
Abramowitz
,
M.
, and
Stegun
,
I. A
, eds., 1964,
Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, (Applied Mathematics Series)
,
National Bureau of Standards, U.S. Govt. Print. Off.
Washington, DC
, Vol.
55
.
21.
Szegö
,
G.
, 1959,
Orthogonal Polynomiashingls
,
American Mathematical Society, Colloquim Publications
,
New York
, Vol.
XXIII
.
22.
Kudish
,
I. I.
, 2000, “
A New Statistical Model of Contact Fatigue
,”
STLE Tribol. Trans.
,
43
, pp.
711
721
.
23.
Kudish
,
I. I.
, and
Covitch
,
M. J.
, 2010,
Modeling and Analytical Methods in Tribology
,
CRC Press
,
New York
.
24.
Kudish
,
I. I.
, 1987, “
Contact Problem of the Theory of Elasticity for Pre-Stressed Bodies with Cracks
,”
J. Appl. Mech. Tech. Phys.
,
28
, pp.
144
152
.
25.
Ciavarella
,
M.
,
Demelio
,
G.
,
Barber
,
J. R.
, and
Jang
,
Y.H.
, 2000, “
Linear Elastic Contact of the Weierstrass Profile
,”
Proc. Roy. Soc. London, Ser. A
456
, pp.
387
405
.
26.
Persson
,
B. N. J.
, 2001, “
Elastoplastic Contact Between Randomly Rough Surfaces
,”
Phys. Rev. Lett.
,
87
(
11
), Paper No.
116101
.
You do not currently have access to this content.