Classical hydrodynamic lubrication theory has been one of the most successful and widely used theories in all of engineering and applied science. This theory predicts that the force resisting the squeezing of a fluid between two parallel plates is inversely proportional to the cube of the fluid thickness. However, recent reports on liquid squeeze film damping in microsystems appear to indicate that experimentally measured damping force is proportional to the inverse of the fluid thickness to the first power—a large fundamental discrepancy from classical theory. This paper investigates potential limitations of lubrication theory in microsystems by theoretical and computational methods. The governing equations for a Newtonian incompressible fluid are solved subject to two-dimensional, parallel surface squeezing by an open-source computational fluid dynamics program called parallel hierarchic adaptive stabilized transient analysis (PHASTA), and by a classical similarity solution technique. At low convective Reynolds numbers, the damping force is determined as a function of the ratio of a reference film thickness H to a reference direction B along the film. Good agreement with classical lubrication theory is found for aspect ratios H/B as high as 1 despite the fact that lubrication theory requires that this ratio be “small.” A similarity analysis shows that when instantaneous convective Reynolds number is of order 10–100 (a range present in experiment), calculated damping deviates significantly from lubrication theory. This suggests that nonlinearity associated with high Reynolds numbers could explain the experimentally observed discrepancy in damping force. Dynamic analysis of beams undergoing small vibrations in the presence of a liquid medium further supports this finding.

1.
Stefan
,
J.
, 1874, “
Versuche über die scheinbare Adhesion
,”
Sitzber. Akad Wiss Wien (Abt II Math-Phys)
,
69
, pp.
713
735
.
2.
Pan
,
C. H. T.
, 1980, “
An Improved Short Bearing Analysis for the Submerged Operation of Plain Journal Bearings and Squeeze Film Dampers
,”
ASME J. Lubr. Technol.
0022-2305,
102
(
3
), pp.
320
322
.
3.
Sharma
,
R. K.
, and
Botman
,
M.
, 1977, “
An Experimental Study of the Steady-State Response of Oil-Film Dampers
,”
ASME J. Mech. Des.
0161-8458,
100
(
2
), pp.
216
221
.
4.
Rogers
,
R. J.
, 1984, “
Arbitrary Motions in Long Cylindrical Squeeze Films
,”
Proc.- Inst. Mech. Eng.
,
198
(
12
), pp.
137
143
.
5.
Tichy
,
J. A.
, 1987, “
A Study of the Effect of Fluid Inertia and End Leakage in the Finite Squeeze Film Damper
,”
ASME J. Tribol.
0742-4787,
109
(
1
), pp.
54
59
.
6.
Ku
,
C. -P.
, and
Tichy
,
J. A.
, 1987, “
Application of the k-ϵ Turbulence Model to the Squeeze Film Damper
,”
ASME J. Tribol.
0742-4787,
109
(
1
), pp.
164
168
.
7.
Tichy
,
J. A.
, 1993, “
Behavior of a Squeeze Film Damper With an Electrorheological Fluid
,”
STLE Tribol. Trans.
1040-2004,
36
(
1
), pp.
127
133
.
8.
Pandey
,
A. K.
, and
Pratap
,
R.
, 2007, “
Effect of Flexural Modes on Squeeze Film Damping in MEMS Cantilever Resonators
,”
J. Micromech. Microeng.
0960-1317,
17
, pp.
2475
2484
.
9.
Sounart
,
T. L.
,
Michalske
,
T. A.
, and
Zavadil
,
K. R.
, 2005, “
Frequency-Dependent Electrostatic Actuation in Microfluidic MEMS
,”
J. Microelectromech. Syst.
1057-7157,
14
(
1
), pp.
125
133
.
10.
Sumali
,
H.
, 2007, “
Squeeze-Film Damping in the Free Molecular Regime: Model Validation and Measurement on a MEMS
,”
J. Micromech. Microeng.
0960-1317,
17
, pp.
2231
2240
.
11.
Rinaldi
,
G. P.
,
Multhukumaran
,
P.
, and
Stiharu
,
I.
, 2007, “
Damping and Quality Factor Optimization in MEMS Microresonators
,”
Can. Acoust.
0711-6659,
35
(
3
), pp.
206
207
.
12.
Clarke
,
R. J.
,
Jensen
,
O. E.
,
Billingham
,
J.
,
Pearson
,
A. P.
, and
Williams
,
P. M.
, 2006, “
Stochastic Elastohydrodynamics of a Microcantilever Oscillating Near a Wall
,”
Phys. Rev. Lett.
0031-9007,
96
, p.
050801
.
13.
Steeneken
,
P. G.
,
Rijks
,
Th. G. S. M.
,
van Beek
,
J. T. M.
,
Ulenaers
,
M. J. E.
,
De Coster
,
J.
, and
Puers
,
R.
, 2005, “
Dynamics and Squeeze Film Gas Damping of a Capacitive FR MEMS Switch
,”
J. Micromech. Microeng.
0960-1317,
15
, pp.
176
184
.
14.
Pandey
,
A. K.
, and
Pratap
,
R.
, 2004, “
Coupled Nonlinear Effect of Surface Roughness and Rarefaction on Squeeze Film Damping in MEMS Structures
,”
J. Micromech. Microeng.
0960-1317,
14
, pp.
1430
1437
.
15.
Chang
,
K. -M.
,
Lee
,
S. -C.
, and
Li
,
S. -H.
, 2002, “
Squeeze Film Damping Effect on a Torsion Mirror
,”
J. Micromech. Microeng.
0960-1317,
12
, pp.
556
561
.
16.
Bao
,
M.
, and
Yang
,
H.
, 2007, “
Squeeze Film Air Damping in MEMS
,”
Sens. Actuators, A
0924-4247,
136
, pp.
3
27
.
17.
Huilian
,
M.
,
Jimenez
,
J.
, and
Rajagopalan
,
R.
, 2000, “
Brownian Fluctuation Spectroscopy Using Atomic Force Microscopes
,”
Langmuir
0743-7463,
16
(
5
), pp.
2254
2261
.
18.
Roters
,
A.
, and
Johannsmann
,
D.
, 1996, “
Distance-Dependent Noise Measurements in Scanning Force Microscopy Source
,”
J. Phys.: Condens. Matter
0953-8984,
8
(
41
), pp.
7561
7577
.
19.
Naik
,
T.
,
Longmire
,
E. K.
, and
Mantell
,
S. C.
, 2003, “
Dynamic Response of a Cantilever in Liquid Near a Solid Wall
,”
Sens. Actuators, A
0924-4247,
102
, pp.
240
254
.
20.
Harrison
,
C.
,
Tavernier
,
E.
,
Vancauwenberghe
,
O.
,
Donzier
,
E.
,
Hsu
,
K.
,
Goodwin
,
A. R. H.
,
Marty
F.
, and
Mercier
,
B.
, 2007, “
On the Response of a Resonating Plate in a Liquid Near a Solid Wall
,”
Sens. Actuators, A
0924-4247,
134
, pp.
414
426
.
21.
Brenner
,
H.
, 1961, “
The Slow Motion of a Sphere Through a Viscous Fluid Towards a Plane Surface
,”
Chem. Eng. Sci.
0009-2509,
16
, pp.
242
251
.
22.
Happel
,
J.
, and
Brenner
,
H.
, 1973,
Low Reynolds Number Hydrodynamics
,
Noordhoff
,
Leyden
.
23.
Tichy
,
J. A.
, and
Modest
,
M. F.
, 1978, “
Squeeze Film Flow Between Arbitrary Two-Dimensional Surfaces Subject to Normal Oscillations
,”
ASME J. Lubr. Technol.
0022-2305,
100
(
3
), pp.
316
322
.
24.
Modest
,
M. F.
, and
Tichy
,
J. A.
, 1978, “
Squeeze Film Flow in Arbitrary Shaped Journal Bearings Subject to Oscillations
,”
ASME J. Lubr. Technol.
0022-2305,
100
(
3
), pp.
323
329
.
25.
Müller
,
J.
,
Sahni
,
O.
,
Li
,
X.
,
Jansen
,
K. E.
,
Shephard
,
M. S.
, and
Taylor
,
C. A.
, 2005, “
Anisotropic Adaptive Finite Element Method for Modeling Blood Flow
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
8
(
5
), pp.
295
305
.
26.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
, 2006, “
Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
(
29–32
), pp.
3776
3796
.
27.
Figueroa
,
C. A.
,
Vignon-Clementel
,
I. E.
,
Jansen
,
K. E.
,
Hughes
,
T. J. R.
, and
Taylor
,
C. A.
, 2006, “
A Coupled Momentum Method for Modeling Blood Flow in Three Dimensional Deformable Arteries
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
(
41–43
), pp.
5685
5706
.
28.
Sahni
,
O. J.
,
Müller
,
J.
,
Jansen
,
K. E.
,
Shephard
,
M. S.
, and
Taylor
,
C. A.
, 2006, “
Efficient Anisotropic Adaptive Discretization of the Cardiovascular System
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
(
41–43
), pp.
5634
5655
.
29.
Marrera
,
V.
,
Bou-Saïd
,
B.
,
Tichy
,
J.
, and
Jansen
,
K.
, 2007, “
Simulation of Blood Flow in a Bifurcation With Non-Newtonian Effects
,”
Proceedings of the Second Francophone Conference on Advanced Mechanics
, pp.
267
275
.
30.
Kummer
,
M. P.
,
Abbot
,
J. J.
,
Vollmers
,
K.
, and
Nelson
,
B. J.
, 2007, “
Measuring the Magnetic and Hydrodynamic Properties of Assembled MEMS Microrobots
,”
Proceedings of the IEEE International Conference on Robotics Automation
, pp.
1122
1127
.
31.
Kurita
,
M.
,
Shiramatsu
,
T.
,
Miyake
,
K.
,
Atsushi
,
A.
,
Soga
,
M.
,
Tanaka
,
H.
,
Shozo
,
S.
, and
Suk
,
M.
, 2006, “
Active Flying-Height Control Slider Using MEMS Thermal Actuator
,”
Microsyst. Technol.
0946-7076,
12
(
4
), pp.
369
375
.
32.
Clough
,
R. W.
, and
Penzien
,
J.
, 1993,
Dynamics of Structures
, 2nd ed.,
McGraw-Hill
,
New York
.
33.
Timoshenko
,
D. H.
,
Young
,
D. H.
, and
Weaver
,
W.
, Jr.
, 1974,
Vibration Problems in Engineering
, 4th ed.,
Wiley
,
New York
.
34.
Andrews
,
M.
,
Harris
,
I.
, and
Turner
,
G.
, 1993, “
A Comparison of Squeeze-Film Theory With Measurements on a Microstructure
,”
Sens. Actuators, A
0924-4247,
36
, pp.
79
87
.
35.
Li
,
G.
, and
Hughes
,
H.
, 2005, “
Review of Viscous Damping in Micro-Machined Structures
,”
SPIE Proceedings on Micromachined Devices and Components VI
, Bellingham, WA, Vol.
4176
, pp.
30
46
.
You do not currently have access to this content.