The negative squeeze lubrication problem is investigated by means of numerical simulations that account for the dynamics of vaporization. The model is based on bubble dynamics, governed by the Rayleigh–Plesset equation, and the Reynolds equation for compressible fluids. Unlike most existing simulation models our model can predict tensile stresses in the fluid film prior to its rupture, which is in accordance with experimental evidence.
1.
Spurk
, J.
, 1997, Fluid Mechanics
, Springer-Verlag
, Berlin
.2.
Dowson
, D.
, and Taylor
, C. M.
, 1979, “Cavitation in Bearings
,” Annu. Rev. Fluid Mech.
0066-4189, 11
, pp. 35
–66
.3.
Optasanu
, V.
, and Bonneau
, D.
, 2000, “Finite Element Mass-Conserving Cavitation Algorithm in Pure Squeeze Motion—Validation/Application to a Connecting-Rod Small End Bearing
,” ASME J. Tribol.
0742-4787, 122
, pp. 162
–169
.4.
Hays
, D. F.
, and Feiten
, J. B.
, 1964, “Cavities Between Moving Parallel Plates
,” Cavitation in Real Liquids
, R.
Davies
, ed., Elsevier
, New York
, pp. 122
–127
.5.
Parkins
, D. W.
, and May-Miller
, R.
, 1984, “Cavitation in an Oscillatory Oil Squeeze Film
,” ASME J. Tribol.
, 106
, pp. 360
–367
. 0742-47876.
Chen
, X.
, Sun
, M.
, Wang
, W.
, Sun
, D. C.
, Zhang
, Z.
, and Wang
, X.
, 2004, “Experimental Investigation of Time Dependent Cavitation in an Oscillatory Squeeze Film
,” Sci. China, Ser. G
, 47
, pp. 107
–112
. 0742-47877.
Wang
, W.
, Zhang
, Z.
, Chen
, X.
, Sun
, M.
, and Sun
, D. C.
, 2005, “Investigation of Cavitation Phenomenon in an Oscillatory Oil Squeeze Film
,” Proceedings of the World Tribology Congress III
, Washington, DC, Paper No. WTC2005–64167.8.
Sun
, D. C.
, Zhang
, Z.
, Wang
, W.
, Sun
, M.
, and Chen
, X.
, 2005, “A Theory of Cavitation in an Oscillatory Oil Squeeze Film
,” Proceedings of the World Tribology Congress III
, Washington, DC, Paper No. WTC2005–64159.9.
Sun
, D. C.
, and Brewe
, D. E.
, 1992, “Two Reference Time Scales for Studying the Dynamic Cavitation of Liquid Films
,” ASME J. Tribol.
0742-4787, 114
, pp. 612
–615
.10.
Elrod
, H. G.
, and Adams
, M. L.
, 1974, “A Computer Program for Cavitation and Starvation Problems
,” Proceedings of the First Leeds-Lyon Symposium on Tribology
, Leeds University, England.11.
Vijayaraghavan
, D.
, and Keith
, T. G.
, Jr., 1990, “An Efficient, Robust and Time Accurate Numerical Scheme Applied to Cavitation Algorithm
,” ASME J. Tribol.
0742-4787, 112
, pp. 44
–51
.12.
Boedo
, S.
, and Booker
, J. F.
, 1995, “Cavitation in Normal Separation of Square and Circular Plates
,” ASME J. Tribol.
0742-4787, 117
, pp. 403
–410
.13.
Kumar
, A.
, and Booker
, J. F.
, 1991, “A Finite Element Cavitation Algorithm
,” ASME J. Tribol.
0742-4787, 113
, pp. 276
–286
.14.
Sahlin
, F.
, Almqvist
, A.
, Larsson
, R.
, and Glavatskih
, S.
, 2007, “A Cavitation Algorithm for Arbitrary Lubricant Compressibility
,” Tribol. Int.
0301-679X, 40
, pp. 1294
–1300
.15.
Hajjam
, M.
, and Bonneau
, D.
, 2007, “A Transient Finite Element Cavitation Algorithm With Application to Radial Lip Seals
,” Tribol. Int.
0301-679X, 40
, pp. 1258
–1269
.16.
Bayada
, G.
, Martin
, S.
, and Vazquez
, C.
, 2006, “Micro-Roughness Effects in (Elasto)Hydrodynamic Lubrication Including a Mass-Flow Preserving Cavitation Model
,” Tribol. Int.
0301-679X, 39
, pp. 1707
–1718
.17.
Streator
, J. L.
, 2006, “An Approximate Analytical Model for the Separation of a Sphere From a Flat in the Presence of a Liquid
,” ASME J. Tribol.
0742-4787, 128
, pp. 431
–435
.18.
Sauer
, J.
, 2000, “Instationär Kavitierende Strömungen—ein Neues Modell Basierend auf Front Capturing und Blasendynamik
,” Ph.D. thesis, Universität Karlsruhe, Karlsruhe, Germany.19.
Sauer
, J.
, and Schnerr
, G. H.
, 2000, “Development of a New Cavitation Model Based on Bubble Dynamics
,” Z. Angew. Math. Mech.
, 80
, pp. S731
–S732
. 0044-226720.
Geike
, T.
, and Popov
, V. L.
, 2008, “Cavitation Within the Framework of Reduced Description of Mixed Lubrication
,” Tribol. Int.
, to be published; 2006, also presented at the Proceedings of the German-Russian Workshop on Wear: Physical Backgrounds and Numerical Simulations
, Apr. 0044-226721.
Geike
, T.
, and Popov
, V. L.
, 2007, “Reduction of Three-Dimensional Contact Problems to One-Dimensional Ones
,” Tribol. Int.
0301-679X, 40
, pp. 924
–929
.22.
Geike
, T.
, and Popov
, V. L.
, 2007, “Mapping of Three-Dimensional Contact Problems Into One Dimension
,” Phys. Rev. E
1063-651X, 76
, p. 036710
.23.
Geike
, T.
, and Popov
, V. L.
, 2008, “Reduced Description of Mixed Lubrication
,” Tribol. Int.
0301-679X, 41
, pp. 542
–548
.24.
Rayleigh
L.
, 1917, “Pressure Developed in a Liquid During the Collapse of a Spherical Cavity
,” Philos. Mag.
0031-8086, 34
, pp. 94
–98
.25.
Plesset
, M. S.
, 1949, “The Dynamics of Cavitation Bubbles
,” ASME Trans. J. Appl. Mech.
0021-8936, 16
, pp. 277
–282
.26.
Plesset
, M. S.
, and Prosperetti
, A.
, 1977, “Bubble Dynamics and Cavitation
,” Annu. Rev. Fluid Mech.
0066-4189, 9
, pp. 145
–185
.27.
Gohar
, R.
, 2001, Elastohydrodynamics
, 2nd ed., Imperial College
, London, UK
.28.
Shu
, C.
, 2000, Differential Quadrature and Its Applications in Engineering
, Springer
, Berlin
.29.
Strehmel
, K.
, and Weimar
, R.
, 1995, Numerik Gewöhnlicher Differentialgleichungen
, Teubner-Verlag
, Stuttgart, Germany
.30.
Shampine
, L. F.
, Reichelt
, M. W.
, and Kierzenka
, J. A.
, 1999, “Solving Index-1 DAEs in Matlab and Simulink
,” SIAM Rev.
0036-1445, 41
, pp. 538
–552
.Copyright © 2009
by American Society of Mechanical Engineers
You do not currently have access to this content.