We deal with rolling contact between quasi-identical bodies. As normal and tangential problems are uncoupled in that case, the simplified approach to determine contact area and normal loading distribution for rolling contact problems is presented in Sec. 2. In Sec. 3, the solution of the tangential problem is used to update the rolling profiles and enables to follow the wear evolution versus time. The method used to solve the normal problem is called semi-Hertzian approach with diffusion. It allows fast determination of the contact area for non-Hertzian cases. The method is based on the geometrical indentation of bodies in contact: The contact area is found with correct dimensions but affected by some irregularities coming from the curvature’s discontinuity that may arise during a wear process. Diffusion between independent stripes smoothes the contact area and the pressure distribution. The tangential problem is also solved on each stripe of the contact area using an extension of the simplified approach developed by Kalker and called FASTSIM. At the end, this approach gives the dissipated power distribution in the contact during rolling and this power is related to wear by Archard’s law. This enables the profiles of the bodies to be updated and the evolution of the geometry to be followed.

1.
Chevalier
,
L.
, and
Chollet
,
H.
, 2000, “
Endommagement des pistes de roulement
,”
Mecanique & Industries
,
1
, pp.
77
103
.
2.
Chevalier
,
L.
,
Cloupet
,
S.
, and
Soize
,
C.
, 2005, “
Probabilistic Approach for Wear Modelling in Steady State Rolling Contact
,”
Wear
,
258
, pp.
1543
1554
. 0043-1648
3.
Love
,
A. E. H.
, 1926,
A Treatise on the Theory of Elasticity
, 4th ed.,
Cambridge University Press
,
Cambridge
.
4.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
5.
Kalker
,
J. J.
, 1990,
Three-Dimensional Elastic Bodies in Rolling Contact
,
Kluwer
,
Dordrecht
.
6.
Mindlin
,
R. D.
, 1949, “
Compliance of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
,
16
, pp.
259
268
. 0021-8936
7.
Jacobson
,
B.
, and
Kalker
,
J. J.
, 2000,
Rolling Contact Phenomena
,
CISM Lecture
No. 411,
Springer
,
Berlin
.
8.
Hertz
,
H.
, 1882, “
Über die Berührung fester elasticher Körper (On the Contact of Elastic Solids)
,”
J. Reine Angew. Math.
0075-4102,
92
, pp.
156
171
, translated and reprinted in Hertz’s miscellaneous papers, 1896, Macmillan, London.
9.
Ayasse
,
J. B.
, and
Chollet
,
H.
, 2005, “
Determination of the Wheel Rail Contact Patch in Semi-Hertzian Conditions
,”
Veh. Syst. Dyn.
,
43
(
3
), pp.
161
172
. 0042-3114
10.
Nayroles
,
B.
,
Touzot
,
G.
, and
Villon
,
P.
, 1991, “
La méthode des éléments diffus
,”
C. R. Acad. Sci., Ser. II: Mec., Phys., Chim., Sci. Terre Univers
0764-4450,
313
, pp.
133
138
.
11.
Kalker
,
J. J.
, 1982, “
A Fast Algorithm for the Simplified Theory of Rolling Contact
,”
Veh. Syst. Dyn.
,
11
, pp.
1
13
. 0042-3114
12.
Goryacheva
,
I. G.
, 1998, “
Contact Mechanics in Tribology
,”
Solid Mechanics and Its Applications
, Vol.
61
,
G. M. L.
, ed.,
,
The Netherlands
.
13.
Ding
,
J.
,
Leen
,
S. B.
, and
McColl
,
I. R.
, 2004, “
The Effect of Slip Regime on Fretting Wear-Induced Stress Evolution
,”
Int. J. Fatigue
0142-1123,
26
, pp.
521
531
.
14.
Yang
,
L. J.
, 2005, “
A Methodology for the Prediction of Standard Steady State Wear Coefficient in an Aluminium-Based Matrix Composite Reinforced With Alumina Particles
,”
J. Mater. Process. Technol.
,
162–163
, pp.
139
148
. 0924-0136
15.
Enblom
,
R.
, and
Berg
,
M.
, 2005, “
Simulation of Railway Wheel Profile Development Due to Wear Influence of Disc Braking and Contact Environment
,”
Wear
,
258
, pp.
1055
1063
. 0043-1648
16.
Archard
,
J. F.
, 1953, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
0021-8979,
24
, pp.
981
988
.
17.
Chevalier
,
L.
,
Cloupet
,
S.
, and
Eddhahak-Ouni
,
A.
, 2006, “
Contributions à la modélisation simplifiée de la mécanique des contacts roulants
,”
Mecanique & Industries
,
7
, pp.
155
168
.
18.
Kalker
,
J. J.
, 1982, “
The Contact Between Wheel and Rail
,”
Delft University of Technology: Report of the Department of Mathematics and Informatics
,
Delft University
,
The Netherlands
, Vol.
82
, pp.
1
36
.
19.
Kalker
,
J. J.
, 1987, “
Wheel/Rail Wear Calculations With the Program CONTACT
,” Contact Mechanics and Wear of Rail/Wheel System, Vol.
2
, pp.
3
26
.
20.
Li
,
Z.-L.
, and
Kalker
,
J. J.
, 1998, “
Simulation of Severe Wheel-Rail Wear
,”
Proceedings of the International Conference Computers in Railways
,
WIT
,
Southampton, UK
, Vol.
6
, pp.
393
402
.
21.
Felder
,
E.
, 2000, “
Mécanismes physiques et modélisation mécanique du frottement entre corps solides
,”
Mecanique & Industries
,
1
(
6
), pp.
555
561
.
22.
François
,
D.
,
Pineau
,
A.
, and
Zaoui
,
A.
, 1993,
Comportement mécanique des matériaux, Tome II
,
Hermès
,
Paris
, pp.
159
166
and
401
450
.
23.
Jendel
,
T.
, 2002, “
Prediction of Wheel Profile Wear-Comparisons With Field Measurements
,”
Wear
,
253
, pp.
89
99
. 0043-1648
24.
Telliskivi
,
T.
, and
Olofsson
,
U.
, 2004, “
Wheel-Rail Wear Simulation
,”
Wear
,
257
, pp.
1145
1153
. 0043-1648
25.
Goryacheva
,
I. G.
,
Rajeev
,
P. T.
, and
Farris
,
T. N.
, 2001, “
Wear in Partial Slip Contact
,”
ASME J. Tribol.
0742-4787,
123
(
4
), pp.
848
856
.
26.
Eddhahak-Ouni
,
A.
, 2006, “
Simulation de l’usure superficielle dans les contacts roulants: Mise en place des méthodes adaptées aux cas non stationnaires
,” Ph.D. thesis, Université de Marne la Vallée, France.
27.
Chevalier
,
L.
,
Cloupet
,
S.
, and
Quillien
,
M.
, 2006, “
Friction and Wear During a Bi-Disc Test Under Severe Conditions
,”
Tribol. Int.
0301-679X,
39
, pp.
1376
1387
.
28.
Cloupet
,
S.
, 2006, “
Simulation de l’usure superficielle par microglissement dans les contacts roulants came—Galet: Approche probabiliste des dispersions expérimentales
,” Ph.D. thesis, École Normale Supérieure de Cachan, France.
29.
Soize
,
C.
, 2005, “
Random Matrix Theory for Modelling Uncertainties in Computational Mechanics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
194
(
12–16
), pp.
1333
1366
.