A semi-analytical method for the tridimensional elastic-plastic contact between two hemispherical asperities is proposed. The first part of the paper describes the algorithm used to deal with the normal contact, which can be either load-driven or displacement-driven (dd). Both formulations use the conjugate gradient method and the discrete convolution and fast Fourier transform (DC-FFT) technique. A validation of the code is made in the case of the displacement-driven formulation for an elastic-plastic body in contact with a rigid punch, simulating a nano-indentation test. Another new feature is the treatment of the contact between two elastic-plastic bodies. The model is first validated through comparison with the finite element method. The contact pressure distribution, the hydrostatic pressure and the equivalent plastic strain state below the contacting surfaces are also found to be strongly modified in comparison to the case of an elastic-plastic body in contact with a purely elastic body. The way to consider rolling and sliding motion of the contacting bodies consists of solving the elastic-plastic contact at each time step while upgrading the geometries as well as the hardening state along the moving directions. The derivations concerning the interference calculation at each step of the sliding process are then shown, and an application to the tugging between two spherical asperities in simple sliding (dd formulation) is made. The way to project the forces in the global reference is outlined, considering the macro-projection due to the angle between the plane of contact and the sliding direction, and the micro-projection due to the pile-up induced by the permanent deformation of the bodies due to their relative motion. Finally, a load ratio is introduced and results are presented in terms of forces, displacements, and energy loss in the contact.

1.
Polonsky
,
I. A.
, and
Keer
,
L. M.
, 1999, “
A Numerical Method for Solving Rough Contact Problems Based on the Multi-Level Multi-Summation and Conjugate Gradient Techniques
,”
Wear
0043-1648,
231
, pp.
206
219
.
2.
Lubrecht
,
A. A.
, and
Ioannides
,
E.
, 1991, “
A Fast Solution of the Dry Contact Problem and the Associated Sub-Surface Stress Field, Using Multilevel Techniques
,”
ASME J. Tribol.
0742-4787,
113
, pp.
128
133
.
3.
Ju
,
Y.
, and
Farris
,
T. N.
, 1996, “
Spectral Analysis of Two-Dimensional Contact Problems
,”
ASME J. Tribol.
0742-4787,
118
, pp.
320
328
.
4.
Nogi
,
T.
, and
Kato
,
T.
, 1997, “
Influence of a Hard Surface Layer on the Limit of Elastic Contact—Part I: Analysis Using a Real Surface Model
,”
ASME J. Tribol.
0742-4787,
119
, pp.
493
500
.
5.
Liu
,
S.
,
Wang
,
Q.
, and
Liu
,
G.
, 2000, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
0043-1648,
243
, pp.
101
111
.
6.
Liu
,
S.
, and
Wang
,
Q.
, 2001, “
A Three-Dimensional Thermomechanical Model of Contact between Nonconforming Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
123
, pp.
17
26
.
7.
Jacq
,
C.
,
Nélias
,
D.
,
Lormand
,
G.
, and
Girodin
,
D.
, 2002, “
Development of a Three-Dimensional Semi-Analytical Elastic-Plastic Contact Code
,”
ASME J. Tribol.
0742-4787,
124
, pp.
653
667
.
8.
Boucly
,
V.
,
Nélias
,
D.
,
Liu
,
S.
,
Wang
,
Q. J.
, and
Keer
,
L. M.
, 2005, “
Contact Analyses for Bodies with Frictional Heating and Plastic Behavior
,”
ASME J. Tribol.
0742-4787,
127
, pp.
355
364
.
9.
Antaluca
,
E.
,
Nélias
,
D.
, and
Cretu
,
S.
, 2004, “
A Three-Dimensional Model for Elastic-Plastic Contact With Tangential Loading—Application to a Dented Surface
,”
Proc. of the 2004 STLE∕ASME Tribology Conference
,
Long Beach, California
, October
24
27
, 2004, Paper No. TRIB2004-64331.
10.
Jacq
,
C.
,
Lormand
,
G.
,
Nélias
,
D.
,
Girodin
,
D.
, and
Vincent
,
A.
, 2003, “
On the Influence of Residual Stresses in Determining the Micro-Yield Stress Profile in a Nitrided Steel by Nano-Indentation
,”
Mater. Sci. Eng., A
0921-5093,
342
, pp.
311
319
.
11.
Sainsot
,
P.
,
Jacq
,
C.
, and
Nélias
,
D.
, 2002, “
A Numerical Model for Elastoplastic Rough Contact
,”
Comput. Model. Eng. Sci.
1526-1492,
3
(
4
), pp.
497
506
.
12.
Gallego
,
L.
,
Nélias
,
D.
, and
Jacq
,
C.
, 2006, “
A Comprehensive Method to Predict Wear and to Define the Optimum Geometry of Fretting Surfaces
,”
ASME J. Tribol.
0742-4787,
128
, pp.
476
485
.
13.
Nélias
,
D.
,
Boucly
,
V.
, and
Brunet
,
M.
, 2006, “
Elastic-Plastic Contact between Rough Surfaces: Proposal for a Wear or Running-in Model
,”
ASME J. Tribol.
0742-4787,
128
, pp.
236
244
.
14.
Wang
,
F.
, and
Keer
,
L. M.
, 2005, “
Numerical Simulation for Three Dimensional Elastic-Plastic Contact with Hardening Behavior
,”
ASME J. Tribol.
0742-4787,
127
, pp.
494
502
.
15.
Popescu
,
G.
,
Morales-Espejel
,
G. E.
,
Wemekamp
,
B.
, and
Gabelli
,
A.
, 2006, “
An Engineering Model for Three-Dimensional Elastic-Plastic Rolling Contact Analyses
,”
Tribol. Trans.
1040-2004,
49
, pp.
387
399
.
16.
Popescu
,
G.
,
Gabelli
,
A.
,
Morales-Espejel
,
G. E.
, and
Wemekamp
,
B.
, 2006, “
Micro-Plastic Material Model and Residual Fields in Rolling Contact
,”
J. ASTM Int.
1546-962X,
3
, pp.
1
12
.
17.
Chen
,
J.
,
Akyuz
,
U.
,
Xu
,
L.
, and
Pidaparti
,
R. M. V.
, 1998, “
Stress Analysis of the Human Temporomandibular Joint
,”
Med. Eng. Phys.
1350-4533,
20
(
8
), pp.
565
572
.
18.
Vijaywargiya
,
R.
, and
Green
,
I.
, 2006, “
A Finite Element Study of the Deformation, Forces, Stress Formation, and Energy Loss in Sliding Cylindrical Contacts
,”
Proc. of IJTC2006, STLE-ASME Int. Joint Trib. Conf.
,
San Antonio, TX
, October
22
25
, 2006, Preprint IJTC2006-12020.
19.
Hamilton
,
G. M.
, and
Goodman
,
L. E.
, 1966, “
The Stress Field Created by a Circular Sliding Contact
,”
ASME J. Appl. Mech.
0021-8936,
33
, pp.
371
376
.
20.
Hamilton
,
G. M.
, 1983, “
Explicit Equations for the Stresses beneath a Sliding Spherical Contact
,”
Proc. Inst. Mech. Eng., Part C: Mech. Eng. Sci.
0263-7154,
197
, pp.
53
59
.
21.
Kogut
,
L.
, and
Etsion
,
I.
, 2003, “
A Semi-Analytical Solution for Sliding Inception of a Spherical Contact
,”
ASME J. Tribol.
0742-4787,
125
, pp.
99
506
.
22.
Faulkner
,
A.
, and
Arnell
,
R. D.
, 2000, “
Development of a Finite Element Model to Simulate the Sliding Interaction Between Two, Three-Dimensional, Elastoplastic, Hemispherical Asperities
,”
Wear
0043-1648,
242
, pp.
114
122
.
23.
Nosonovsky
,
M.
, and
Adams
,
G. G.
, 2000, “
Steady-State Frictional Sliding of Two Elastic Bodies with a Wavy Contact Interface
,”
ASME J. Tribol.
0742-4787,
122
, pp.
490
495
.
24.
Fotiu
,
P. A.
, and
Nemat-Nasser
,
S.
, 1996, “
A Universal Integration Algorithm for Rate-Dependent Elastoplasticity
,”
Comput. Struct.
0045-7949,
59
, pp.
1173
1184
.
25.
El Ghazal
,
H.
, 1999, “
Etude des propriétés microstructurales et mécaniques des aciers 16NiCrMo13 cémenté et 32CrMoV13 nitruré-Application à la prévision de leur limite d’endurance en fatigue de roulement
,” Ph.D. thesis, INSA Lyon, France.
26.
Green
,
I.
, 2005, “
Poisson Ratio Effects and Critical Values in Spherical and Cylindrical Hertzian Contacts
,”
Appl. Mech. Eng.
1425-1655,
10
, pp.
451
462
.
You do not currently have access to this content.