For several decades, asperities of nominally flat rough surfaces were considered to be points higher than their immediate neighbors. Recently, it has been recognized that this model is incorrect. To address the issue, a new multiple-point asperity model, called the n-point asperity model, is introduced in this paper. In the new model, asperities are composed of n neighboring sampled points with n-2 middle points being above a certain level. When the separation between two surfaces decreases, new asperities with higher number of sample points, n, will come into existence. Based on the above model, the height and curvature of n-point asperities are defined and their distributions are found. The model is developed for Gaussian surfaces and for the general case of an autocorrelation function (ACF). As a case study, the exponential ACF is applied to the new model, which is shown to produce remarkably good agreement with measurements from real and simulated surfaces.

1.
Zhuravlev
,
V. A.
, 1940, “
On Question of Theoretical Justification of the Amontons-Coulomb Law for Friction of Unlubricated Surfaces
,”
Zh. Tekh. Fiz.
0044-4642,
10
, pp.
1447
1452
.
2.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
1364-5021,
295
, pp.
300
319
.
3.
Whitehouse
,
D. J.
, and
Archard
,
J. F.
, 1970, “
The Properties of Random Surfaces of Significance in Their Contact
,”
Proc. R. Soc. London, Ser. A
1364-5021,
316
, pp.
97
121
.
4.
Onions
,
R. A.
, and
Archard
,
J. F.
, 1973, “
The Contact of Surfaces Having a Random Structure
,”
J. Phys. D
0022-3727,
6
, pp.
289
304
.
5.
Whitehouse
,
D. J.
, and
Phillips
,
M. J.
, 1978, “
Discrete Properties of Random Surfaces
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
290
, pp.
267
298
.
6.
Whitehouse
,
D. J.
, and
Phillips
,
M. J.
, 1982, “
Two-Dimensional Discrete Properties of Random Surfaces
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
305
, pp.
441
468
.
7.
Rice
,
S. O.
, 1945, “
Mathematical Analysis of Random Noise
,”
Bell Syst. Tech. J.
0005-8580,
24
, pp.
46
156
.
8.
Longuet-Higgins
,
M. S.
, 1957, “
The Statistical Analysis of Random, Moving Surface
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
249
, pp.
321
387
.
9.
Nayak
,
P. R.
, 1971, “
Random Process Model of Rough Surfaces
,”
ASME J. Lubr. Technol.
0022-2305,
93
(
3
), pp.
398
407
.
10.
Greenwood
,
J. A.
, 1984, “
A Unified Theory of Surface Roughness
,”
Proc. R. Soc. London, Ser. A
1364-5021,
393
, pp.
133
157
.
11.
Bush
,
A. W.
,
Gibson
,
R. D.
, and
Thomas
,
T. R.
, 1975, “
The Elastic Contact of a Rough Surface
,”
Wear
0043-1648,
35
, pp.
87
111
.
12.
Bush
,
A. W.
,
Gibson
,
R. D.
, and
Keogh
,
G. P.
, 1979, “
Strongly Anisotropic Rough Surfaces
,”
ASME J. Lubr. Technol.
0022-2305,
101
(
1
), pp.
15
20
.
13.
McCool
,
J. I.
, 1986, “
Comparison of Models for the Contact of Rough Surfaces
,”
Wear
0043-1648,
107
, pp.
37
60
.
14.
McCool
,
J. I.
, 2000, “
Extending the Capability of the Greenwood and Williamson Microcontact Model
,”
ASME J. Tribol.
0742-4787,
122
(3), pp.
496
502
.
15.
Greenwood
,
J. A.
, and
Wu
,
J. J.
, 2001, “
Surface Roughness and Contact: An Apology
,”
Meccanica
0025-6455,
36
(
6
), pp.
617
630
.
16.
Archard
,
J. F.
, 1957, “
Elastic Deformation and the Laws of Friction
,”
Proc. R. Soc. London, Ser. A
1364-5021,
243
, pp.
190
205
.
17.
Borodich
,
F. M.
, and
Onishchenko
,
D. A.
, 1999, “
Similarity and Fractality in the Modeling of Roughness by a Multilevel Profile with Hierarchical Structure
,”
Int. J. Solids Struct.
0020-7683,
36
(
17
), pp.
2585
2612
.
18.
Wu
,
J. J.
, 2001, “
The Properties of Asperities of Real Surfaces
,”
ASME J. Tribol.
0742-4787,
123
(
4
), pp.
872
883
.
19.
Majumdar
,
A.
, and
Bhushan
,
B.
, 1991, “
Fractal Model of Elastic-Plastic Contact between Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
113
(
1
), pp.
1
11
.
20.
Maugis
,
D.
, 2000,
Contact, Adhesion and Rupture of Elastic Solids
,
Springer Verlag
, Berlin.
21.
O'Callaghan
,
M.
, and
Cameron
,
M. A.
, 1976, “
Static Contact under Load between Nominally Flat Surfaces in which Deformation is Purely Elastic
,”
Wear
0043-1648,
36
, pp.
76
97
.
22.
Francis
,
H. A.
, 1977, “
Application of Spherical Indentation Mechanics to Reversible and Irreversible Contact between Rough Surfaces
,”
Wear
0043-1648,
45
, pp.
221
269
.
23.
Thomas
,
T. R.
, 1982,
Rough Surfaces
,
Longman
, London.
24.
Ranial
,
A. J.
, 1991, “
Bandwidth from a Large Excursion of Gaussian Noise
,”
IEEE Trans. Instrum. Meas.
0018-9456,
40
(
4
), pp.
688
693
.
25.
Woods
,
J. W.
, 1972, “
Two-dimensional Discrete Markovian Fields
,”
IEEE Trans. Inf. Theory
0018-9448,
18
(
2
), pp.
232
240
.
26.
Koester
,
D. A.
,
Mahadevan
,
R.
,
Hardy
,
B.
, and
Markus
,
K. W.
, 2001,
MUMPs Design Handbook
, Rev. 7,
Cronos Integrated Microsystems Inc.
, Research Triangle, NC.
You do not currently have access to this content.