A fracture mechanics model has been developed to estimate the fretting fatigue strength and the service life of structural components. Integrated in this model is a contact problem solver that is automated to deal with the geometric and material nonlinearities of the problem. A three-dimensional interface element was developed to model the constitutive laws of the interface. The results demonstrated the capability of the model to predict the conditions under which small fretting-induced fatigue cracks are arrested. The model was validated by predicting the S-N curves produced experimentally for Inconel 600 at high temperature. The prediction of the fretting fatigue limit was found to be in excellent agreement with the experimental results.
Issue Section:
Research Papers
1.
Attia
, M. H.
, 2000, “Fretting Fatigue of Nickel-Based Alloys in Steam Environment at 265°C
,” Proc. 2nd International Symposium
on Fretting Fatigue: Current Technology and Practices
, Hoeppner
D. W.
et al., eds., American Society for Testing and Materials
, ASTM STP-1367, pp. 231
–246
.2.
Anton
, D. L.
, Lutian
, M. J.
, Favrow
, L. H.
, Logan
, D.
, and Annigeri
, B.
, 2000, “The Effects of Contact Stress and Slip Distance on Fretting Fatigue Damage in Ti-6A1-4V/17-4PH
,” Proc. 2nd International Symposium
on Fretting Fatigue: Current Technology and Practices
, Hoeppner
D. W.
et al., eds., American Society for Testing and Materials
, ASTM STP-1367, pp. 119
–140
.3.
Szolwinski
, M. P.
, Harish
, G.
, McVeigh
, P. A.
, and Farris
, T. N.
, 2000, “Experimental Study of Fretting Crack Nucleation in Aerospace Alloys with Emphasis on Life Prediction
” Proc. 2nd International Symposium
on Fretting Fatigue: Current Technology and Practices
, Hoeppner
D. W.
et al., eds., American Society for Testing and Materials
, ASTM STP-1367, pp. 267
–281
.4.
Tang
, H.
, 1997, “Review and Survey of Fretting Damage in Nuclear Power Equipment and Structures
,” Proc.
International Symposium on Fretting
, Zhou
, Z.
, ed., Southwest Jiaotong University Press
, Chengdu, P.R. China
, pp. 234
–237
.5.
“
Final Report on the Steam Generator Tube Break at Mihama Unit No.2 of Kansai Electric Power Co., Inc. Occurred on February 9, 1991
,” 1991, Agency of Japanese Natural Resources and Energy, Ministry of International Trade and Industry.6.
Waterhouse
, R. B.
, 1968, “The Effect of Clamping Stress Distribution on the Fretting Fatigue of Alpha Brass and Al-Mg-Zn Alloy
,” ASLE Trans.
0569-8197 11
, pp. 1
–5
.7.
Edwards
, P. R.
, 1981, “The Application of Fracture Mechanics to Predicting Fretting Fatigue
,” in Fretting Fatigue
, Waterhouse
, R. B.
, ed., Applied Science
, London, England, pp. 67
–97
.8.
Levine
, H. S.
, Ludwig
, C. J.
, Vaughan
, D. K.
, and Isenberg
, J.
, 1988, “Comparison of two Different Approaches for Interface Modelling in Large Scale Soil-Structure Interaction Problems
,” ASME AMD-94 on Large-Scale Interaction Problem
, Noor
A. K.
et al., eds., pp. 1
–12
.9.
Herrmann
, L. R.
, 1978, “Finite Element Analysis of Contact Problems
,” J. Eng. Mech. Div.
0044-7951 104
(5)
, pp. 1043
–1057
.10.
Beer
, G.
, 1985, “An Isotropic Joint/Interface Element for FE Analysis
,” Int. J. Numer. Methods Eng.
0029-5981 21
, pp. 585
–600
.11.
Stover
, R. J.
, Mabie
, H. H.
, and Furey
, M. J.
, 1985, “A Finite Element Investigation of a Bearing/Cartridge Interface for a Fretting Corrosion Study
,” ASME J. Tribol.
0742-4787 107
, pp. 157
–164
.12.
Sato
, K.
, 1988, “Estimation of Fretting Fatigue Limits
,” Proc.
31st Japan Congress on Materials Research
, Society of Materials Science
, Kyoto, Japan
, pp. 23
–28
.13.
Moesser
, M. W.
, Adibnazari
, S.
, and Hoeppner
, D. W.
, 1994, “Finite Element Model of Fretting Fatigue With Variable Coefficient of Friction Over Time and Space
,” Proc.
International Conference on Fretting Fatigue
, Waterhouse
R. B.
et al., eds., ESIS Publication 18
, London
, pp. 102
–109
.14.
Hattori
, T.
, Nakamura
, M.
, and Ishizuka
, T.
, 1992, “Fretting Fatigue Analysis of Strength Improved Models With Grooving or Knurling on Contact Surfaces
,” Proc.
Symposium on Standardization of Fretting Fatigue Test Methods and Equipment
(ASTM STP-1159), Attia
M. H.
et al., eds., pp. 101
–114
.15.
Back
, N.
, Burdekin
, M.
, and Cowley
, A.
, 1972, “Review of the Research on Fixed and Sliding Joints
,” 13th Int. Machine Tool Design and Research Conference
, pp. 87
–97
.16.
Back
, N.
, Burdekin
, M.
, and Cowley
, A.
, 1973, “Analysis of Machine Tool Joints by the Finite-Element Method
,” 14th International Machine Tool Design and Research Conference
, pp. 529
–537
.17.
Cook
, R. D.
, Malkus
, D.
, and Plesha
, M. E.
, 1989, Concepts and Applications of Finite Element Analysis
, 3rd edition, John Wiley & Sons
, New York.18.
Algor Process Reference Manual, 2001, Algor Interactive Systems, PA.
19.
Levina
, Z. M.
, 1967, “Research on Static Stiffness of Joints of Machine Tools
,” Proc.
8th International Machine Tool Design and Research Conference
, pp. 737
–758
.20.
Back
, N.
, Burdekin
, M.
, and Cowley
, A.
, 1973, “Pressure Distribution and Deformations of Machined Components in Contact
,” Int. J. Mech. Sci.
0020-7403, 15
, pp. 993
–1010
.21.
Rooke
, D. P.
, and Jones
, D. A.
, 1979, “Stress Intensity Factors in Fretting Fatigue
,” J. Strain Anal. Eng. Des.
0309-3247, 14
(1
), pp. 1
–6.
22.
Hattori
, T.
, Nakamura
, M.
, and Watanabe
, T.
, 1984, “Fretting Fatigue Analysis Using Fracture Mechanics
,” ASME, 84-WAM/DE-10.23.
Speidel
, M. O.
, 1977, “Corrosion Fatigue in Fe-Ni-Cr Alloys
,” Proc.
International Conf. on Stress Corrosion and Hydrogen Embrittlement of Iron Base Alloys
, Unieux, Firminy, France
, Staehe
R. W.
et al., eds., National Assoc. of Corrosion Engineers, NACE
, Vol. 5
, pp. 1071
–1094
.24.
Mirzai
, M.
, Pagan
, S.
, Marsuka
, C.
, Lepik
, O.
, Ogundele
, G.
, Wright
, M.
, and Kharshafdjian
, G.
, 1997, “Stress Corrosion Cracking/Corrosion Fatigue in Alloy 600
,” Proc. 8th International Symposium
on Environmental Degradation of Materials in Nuclear Power Systems
, sponsored by American Nuclear Society, Amelia Island Plantation
, Amelia, FL
, pp. 11
–18
.25.
Ogura
, K.
, and Nishikawa
, I.
, 1990, “Fatigue Thereshold and Closure at Moderately Elevated Temperatures
,” Fatigue 90, Proc.
4th Int. Conf. on Fatigue and Fatigue Threshold
, Kitagawa
H.
et al., eds., Materials and Components Engineering Publications
, UK, pp. 1413
–1418
.26.
“
Fatigue and Fracture
,” 1990, ASM Handbook, Vol. 19
, the ASM International Handbook Committee
, Lampman
S. R.
et al., eds.,27.
Pook
, L. P.
, and Smith
, R. A.
, 1979, “Theoretical Background to Elastic Fracture Mechanics
,” Proc. Conf.
on Fracture Mechanics-Current Status, Future Prospects
, Smith
, R. A.
ed., Cambridge, U. K.
, pp. 29
–67
.28.
Lindley
, T. C.
, and Nix
, K. J.
, 1986, “Metallurgical Aspects of Crack Growth
,” Proc.
Conf. on Fatigue Crack Growth-30 Years of Progress
, Smith
, R. A.
ed., Cambridge, U.K.
, p. 53
–74
.29.
Usami
, S.
, 1982, “Applications of Threshold Cyclic-Plastic-Zone-Size Criterion to Some Fatigue Limit Problems
,” Proc.
International Conference on Fatigue Thresholds: Fundamentals and Engineering Applications
, Backlund
J.
et al., eds., Stockholm, Vol. 1
, pp. 205
–238
.30.
El Haddad
, M. H.
, Smith
, K. N.
, and Topper
, T. H.
, 1979, “Fatigue Crack Propagation of Short Cracks
,” ASME J. Eng. Mater. Technol.
0094-4289, 101
, pp. 42
–46
.31.
Faanes
, S.
, and Fernando
, U. S.
, 1993, “Life Prediction in Fretting Fatigue Using Fracture Mechanics
,” Proc. the Symposium
on Fretting Fatigue
, Waterhouse
R. B.
et al., eds., Sheffield, UK
, pp. 149
–159
.32.
Stanley
, P.
, 1976, Fracture Mechanics in Engineering Practice
, Applied Science Publishers Ltd.
, London.Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.