A modified governing equation is derived incorporating the effects of roughness and cavitation in a journal bearing. The available theories of Reynolds roughness and cavitation algorithm proposed by Elrod are utilized in this work to develop a numerical procedure for stability analysis of a liquid lubricated rough journal bearing. The Elrod generalized theory of Reynolds roughness provides a governing equation based on the surface configuration. The Elrod cavitation algorithm conserves mass throughout the bearing and automatically predicts the full film and cavitation regions using a switch function. The roughness is considered on either or both the bearing and journal surfaces. The instability threshold speed increases significantly for the roughness patterns on the grooved bearing surface only at higher eccentricity ratios. The threshold speed increases significantly with increase in the inclination of herringbone type striated roughness patterns on the journal surface from 110° to 150°.

1.
Tzeng
,
S. T.
, and
Saibel
,
E.
,
1967
, “
Surface Roughness Effect on Slider Bearing Lubrication
,”
ASLE Trans.
,
10
, p.
334
334
.
2.
Christensen
,
H.
, and
Tonder
,
K.
,
1973
, “
The Hydrodynamic Lubrication of Rough Journal Bearings
,”
ASME J. Lubr. Technol.
,
95
, pp.
166
171
.
3.
Tripp
,
J. H.
,
1983
, “
Surface Roughness Effects in Hydrodynamic Lubrication: The Flow Factor Method
,”
ASME J. Lubr. Technol.
,
105
, pp.
458
464
.
4.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Technol.
,
100
, pp.
12
17
.
5.
Patir
,
N.
, and
Cheng
,
H. S.
,
1979
, “
Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces
,”
ASME J. Lubr. Technol.
,
101
, pp.
220
230
.
6.
Elrod
,
H. G.
,
1979
, “
A General Theory for Laminar Lubrication With Reynolds Roughness
,”
ASME J. Lubr. Technol.
,
101
, pp.
8
14
.
7.
Majumdar
,
B. C.
, and
Ghosh
,
M. K.
,
1990
, “
Stability of a Rigid Rotor Supported on Rough Oil Journal Bearings
,”
ASME J. Tribol.
,
112
, pp.
73
77
.
8.
Ramesh
,
J.
, and
Majumdar
,
B. C.
,
1995
, “
Stability of Rough Journal Bearings Using Nonlinear Transient Method
,”
ASME J. Tribol.
,
117
, pp.
691
695
.
9.
Elrod
,
H. G.
,
1981
, “
A Cavitation Algorithm
,”
ASME J. Lubr. Technol.
,
103
, pp.
350
354
.
10.
Vijayaraghavan
,
D.
, and
Keith
,
T. G.
,
1990
, “
An Efficient, Robust and Time Accurate Numerical Scheme Applied to Cavitation Algorithm
,”
ASME J. Tribol.
,
112
, pp.
44
51
.
11.
Boedo
,
S.
, and
Booker
,
J. F.
,
1997
, “
Surface Roughness and Structural Inertia in a Mode Based Mass-Conserving Elastohydrodynamic Lubrication Model
,”
ASME J. Tribol.
,
119
, pp.
449
455
.
12.
Wang
,
P.
,
Keith
,
T. G.
, and
Vaidyanathan
,
K.
,
2002
, “
Combined Surface Roughness Pattern and Non-Newtonian Effects on the Performance of Dynamically Loaded Journal Bearings
,”
STLE Tribol. Trans.
,
123
, pp.
134
143
.
13.
Harp
,
S. R.
, and
Salant
,
R. F.
,
2001
, “
An Average Flow Model of Rough Surface Lubrication With Inter-Asperity Cavitation
,”
ASME J. Tribol.
,
123
, pp.
134
143
.
14.
Wang
,
Y.
,
Wang
,
Q. J.
, and
Lin
,
C.
,
2003
, “
Mixed Lubrication of Coupled Journal—Thrust Bearing Systems Including Mass Conserving Cavitation
,”
ASME J. Tribol.
,
125
, pp.
747
755
.
15.
Lund, J. W., and Thomsen, K. K., 1978, “Calculation Method and Data for the Dynamic Coefficients of Oil-Lubricated Journal Bearings,” in Topics in Fluid Bearing and Rotor Bearing System Design and Optimization, ASME, New York, pp. 1–28.
16.
Hryniewicz
,
P.
,
Szeri
,
A. Z.
, and
Jahanmir
,
S.
,
2001
, “
Application of Lubrication Theory to Fluid Flow in Grinding: Part II—Influence of Wheel and Workpiece Roughness
,”
ASME J. Tribol.
,
123
, pp.
101
107
.
17.
Rao
,
T. V. V. L. N.
, and
Sawicki
,
J. T.
,
2002
, “
Linear Stability Analysis for a Hydrodynamic Journal Bearing Considering Cavitation Effects
,”
STLE Tribol. Trans.
,
45
, pp.
450
456
.
18.
Rao
,
T. V. V. L. N.
, and
Sawicki
,
J. T.
,
2004
, “
Stability Characteristics of Herringbone Grooved Journal Bearings Incorporating Cavitation Effects
,”
ASME J. Tribol.
,
126
, pp.
281
287
.
You do not currently have access to this content.