This paper studies the bifurcation of a rigid rotor supported by a gas film bearing. A time-dependent mathematical model for gas journal bearings is presented. The finite differences method and the Successive Over Relation (S.O.R) method are employed to solve the Reynolds’ equation. The system state trajectory, Poincare´ maps, power spectra, and bifurcation diagrams are used to analyze the dynamic behavior of the rotor center in the horizontal and vertical directions under different operating conditions. The analysis shows how the existence of a complex dynamic behavior comprising periodic and subharmonic response of the rotor center. This paper shows how the dynamic behavior of this type of system varies with changes in rotor mass and rotational velocity. The results of this study contribute to a further understanding of the nonlinear dynamics of gas film rotor-bearing systems.

1.
Gross
,
W. A.
, and
Zachmanaglou
,
E. C.
,
1961
, “
Perturbation Solutions for Gas-Lubricating Films
,”
ASME J. Basic Eng.
,
83
, pp.
139
144
.
2.
Ausman
,
J. S.
,
1963
, “
Linearized ph Stability Theory for Translatory Half-Speed Whirl of Long Self-Acting Gas-Lubricated Journal Bearings
,”
ASME J. Basic Eng.
,
83
, pp.
611
619
.
3.
Castelli
,
V.
, and
Elrod
,
H. G.
,
1961
, “
Solution of the Stability Problem for 360 Degree Self-Acting, Gas-Lubricated Bearing
,”
ASME J. Basic Eng.
,
87
, pp.
199
212
.
4.
Malik
,
M.
, and
Bert
,
C. W.
,
1994
, “
Differential Quadrature Solution for Steady State Incompressible and Compressible Lubrication Problems
,”
ASME J. Tribol.
,
116
, pp.
296
302
.
5.
Holmes
,
A. G.
,
Ettles
,
C. M.
, and
Mayes
,
I. W.
,
1978
, “
Aperiodic Behavior of a Rigid Shaft in Short Journal Bearings
,”
Int. J. Numer. Methods Eng.
,
12
, pp.
695
702
.
6.
Sykes, J. E. H., and Holmes, R., 1990, “The Effect of Bearing Misalignment on the Non-Linear Vibration of Aero-Engine Rotor-Damper Assemblies,” Proceeding Institution of Mechanical Engineers, 204, pp. 83–99.
7.
Kim
,
Y. B.
, and
Noah
,
S. T.
,
1990
, “
Bifurcation Analysis of a Modified Jeffcot Rotor with Bearing Clearances
,”
Nonlinear Dyn.
,
1
, pp.
221
241
.
8.
Zhao
,
J. Y.
,
Linnett
,
I. W.
, and
Mclean
,
L. J.
,
1994
, “
Subharmonic and Quasi-Periodic Motion of an Eccentric Squeeze Film Damper-Mounted Rigid Rotor
,”
ASME J. Vibr. Acoust.
,
116
, pp.
357
363
.
9.
Brown
,
R. D.
,
Addison
,
P.
, and
Chan
,
A. H. C.
,
1994
, “
Chaos In The Unbalance Response of Journal Bearings
,”
Nonlinear Dyn.
,
5
, pp.
421
432
.
10.
Adiletta
,
G.
,
Guido
,
A. R.
, and
Rossi
,
C.
,
1996
, “
Chaotic Motions of a Rigid Rotor In Short Journal Bearings
,”
Nonlinear Dyn.
,
10
, pp.
251
269
.
11.
Adiletta
,
G.
,
Guido
,
A. R.
, and
Rossi
,
C.
,
1997
, “
Nonlinear Dynamics of a Rigid Unbalanced Rotor In Short Bearings. Part I: Theoretical Analysis
,”
Nonlinear Dyn.
,
14
, pp.
57
87
.
12.
Adiletta
,
G.
,
Guido
,
A. R.
, and
Rossi
,
C.
,
1997
, “
Nonlinear Dynamics of a Rigid Unbalanced Rotor In Short Bearings. Part II: Experimental Analysis
,”
Nonlinear Dyn.
,
14
, pp.
157
189
.
13.
Sundararajan
,
P.
, and
Noah
,
S. T.
,
1997
, “
Dynamics of Forced Nonlinear Systems Using Shooting/Arc-length Continuation Method—Application to Rotor Systems
,”
ASME J. Vibr. Acoust.
,
119
, pp.
9
20
.
You do not currently have access to this content.