An analytic solution is presented for squeeze film flow with smooth, arbitrary, two-dimensional surface geometry. One surface undergoes sinusoidal oscillation toward the other. The oscillation amplitude is much smaller than the film thickness, which is in turn much smaller than the bearing length. The solution improves on the lubrication theory due to the inclusion of inertia effects. The solution to an illustrative problem is presented—the thrust bearing. The velocity field, pressure distribution and load differ significantly from those predicted by lubrication theory. The results show the lubrication solution for load and pressure to be in error by over 100 percent for Reynolds numbers as low as 5.

This content is only available via PDF.
You do not currently have access to this content.