This paper presents experimental data from a two-layer test sample made up of a copper layer and an AISI type 316 stainless steel (SS) layer that was heated with a laser power source. Experiments were conducted to generate high-temperature benchmark data that ranged from room temperature to 820 °C. The concept of time rescaling was employed to account for the dependence of thermal diffusivity on temperature in order to utilize the calibration integral equation method (CIEM). The future time regularization method was used to obtain a stable prediction for the surface temperature. An estimate for the future time regularization parameter was acquired through analysis of the in-depth calibration test thermocouple (TC) response. Results for three test cases consisting of selected pairs of calibration data and reconstruction data (to be predicted) are presented and discussed. Four different values of the future time regularization parameter were employed in the three test cases. The proposed nonlinear (NL) formulation improved the prediction accuracy when compared to the constant properties formulation of the CIEM. It should be emphasized that no knowledge of TC probe depth or TC response properties is required.

References

1.
Burggraf
,
O. R.
,
1964
, “
An Exact Solution of the Inverse Heat Conduction Theory and Application
,”
ASME J. Heat Transfer
,
86
(
3
), pp.
373
382
.
2.
Monde
,
M.
,
Arima
,
H.
, and
Mitsutake
,
Y.
,
2003
, “
Estimation of Surface Temperature and Heat Flux Using Inverse Solution for One-Dimensional Heat Conduction
,”
ASME J. Heat Transfer
,
125
(
2
), pp.
213
223
.
3.
Beck
,
J. V.
,
1962
, “
Calculation of Surface Heat Flux From an Internal Temperature History
,”
ASME
Paper No. 62-HT46.
4.
Beck
,
J. V.
,
Blackwell
,
B.
, and
Haji-Sheik
,
A.
,
1996
, “
Comparison of Some Inverse Heat Conduction Methods Using Experimental Data
,”
Int. J. Heat Mass Transfer
,
39
(
17
), pp.
3649
3657
.
5.
Beck
,
J. V.
,
2008
, “
Filter Solutions to the Nonlinear Inverse Heat Conduction Problem
,”
Inverse Probl. Sci. Eng.
,
16
(
1
), pp.
3
20
.
6.
Carasso
,
A. S.
,
1993
, “
Slowly Divergent Space Marching Schemes in the Inverse Heat Conduction Problem
,”
Numer. Heat Transfer, Part B
,
23
(
1
), pp.
111
126
.
7.
Taler
,
J.
,
1999
, “
A New Space Marching Method for Solving Inverse Heat Conduction Problems
,”
Forsch. Ingenieurwes.
,
64
(
11
), pp.
296
306
.
8.
Elkins
,
B. S.
,
Keyhani
,
M.
, and
Frankel
,
J. I.
,
2008
, “
A New Fully Implicit Inverse Heat Conduction Method
,”
AIAA
Paper No. 2008-1189.
9.
Daouas
,
N.
, and
Radhouani
,
M. S.
,
2007
, “
Experimental Validation of an Extended Kalman Smoothing Technique for Solving Nonlinear Inverse Heat Conduction Problems
,”
Inverse Probl. Sci. Eng.
,
15
(
7
), pp.
765
782
.
10.
Chen
,
H. T.
, and
Chang
,
S. M.
,
1990
, “
Application of the Hybrid Method to Inverse Heat Conduction Problems
,”
Int. J. Heat Mass Transfer
,
33
(
4
), pp.
621
628
.
11.
Chen
,
H. T.
, and
Wu
,
X. Y.
,
2007
, “
Estimation of Surface Conditions for Nonlinear Inverse Heat Conduction Problems Using the Hybrid Inverse Scheme
,”
Numer. Heat Transfer, Part B
,
51
(
2
), pp.
159
178
.
12.
Elkins
,
B. S.
,
Keyhani
,
M.
, and
Frankel
,
J. I.
,
2012
, “
Global Time Method for Inverse Heat Conduction Problem
,”
Inverse Probl. Sci. Eng.
,
20
(
5
), pp.
651
664
.
13.
Plewa
,
J.
,
Elkins
,
B. S.
,
Keyhani
,
M.
, and
Frankel
,
J. I.
,
2012
, “
Heat Transfer Analysis Via Rate Based Sensors
,”
AIAA
Paper No. 2012-08100.
14.
Löhle
,
S.
,
Battaglia
,
J. L.
,
Batsale
,
J. C.
,
Bourserau
,
F.
,
Conte
,
D.
,
Jullien
,
P.
,
Ootegem
,
B. V.
,
Couzi
,
J.
, and
Lasserre
,
J. P.
,
2006
, “
Estimation of High Heat Flux in Supersonic Plasma Flows
,”
IECON 2006—32nd Annual Conference on IEEE Industrial Electronics
, Paris, France, Nov. 6–10,
2006
, pp.
5336
5373
.
15.
Löhle
,
S.
,
Battaglia
,
J. L.
,
Jullien
,
P.
,
Ootegem
,
B. V.
,
Lasserre
,
J. P.
, and
Couzi
,
J.
,
2008
, “
Improvement of High Heat Flux Measurement Using a Null-Point Calorimeter
,”
AIAA J. Spacecr. Rockets
,
45
(
1
), pp.
76
81
.
16.
Gardarein
,
J. L.
,
Battaglia
,
J. L.
, and
Loehle
,
S.
,
2009
, “
Heat Flux Sensor Calibration Using Noninteger System Identification: Theory, Experiment and Error Analysis
,”
Rev. Sci. Instrum.
,
80
(
2
), p.
025103
.
17.
Frankel
,
J. I.
, and
Keyhani
,
M.
,
2013
, “
Theoretical Development of a New Surface Heat Flux Calibration Method for Thin-Film Resistive Temperature Gauges and Co-Axial Thermocouples
,”
Shock Waves
,
23
(
2
), pp.
177
188
.
18.
Frankel
,
J. I.
,
Keyhani
,
M.
, and
Elkins
,
B. S.
,
2013
, “
Surface Heat Flux Prediction Through Physics-Based Calibration—Part 1: Theory
,”
J. Thermophys. Heat Transfer
,
27
(
2
), pp.
189
205
.
19.
Elkins
,
B. S.
,
Keyhani
,
M.
, and
Frankel
,
J. I.
,
2013
, “
Surface Heat Flux Prediction Through Physics-Based Calibration—Part 2: Experimental Verification
,”
J. Thermophys. Heat Transfer
,
27
(
2
), pp.
206
216
.
20.
Chen
,
Y. Y.
,
Frankel
,
J. I.
, and
Keyhani
,
M.
,
2014
, “
A New Nonlinear Surface Heat Flux Calibration Method Based on Kirchhoff Transformation and Rescaling Principles
,”
Inverse Probl. Sci. Eng.
,
22
(
8
), pp.
1394
1421
.
21.
Chen
,
Y. Y.
,
Frankel
,
J. I.
, and
Keyhani
,
M.
,
2016
, “
A Nonlinear, Rescaling Based Inverse Heat Conduction Calibration Method and Optimal Regularization Parameter Strategy
,”
J. Thermophys. Heat Transfer
,
30
(
1
), pp.
67
88
.
22.
Tikhonov
,
A. N.
, and
Arsenin
,
V. Y.
,
1977
,
Solution of Ill-Posed Problems
,
V. H. Winston & Sons
,
Washington, DC
.
23.
Pande
,
A. S.
,
2013
, “
Investigation of the One-Probe and Two-Probe Calibration Integral Equation Methods Using Experimental Data
,” M.S. thesis, The University of Tennessee, Knoxville, TN.
24.
Shenefelt
,
J. R.
,
Luck
,
R.
,
Taylor
,
R. P.
, and
Berry
,
J. T.
,
2002
, “
Solution to Inverse Heat Conduction Problems Employing Singular Value Decomposition and Model-Reduction
,”
Int. J. Heat Mass Transfer
,
45
(
1
), pp.
67
74
.
25.
Frankel
,
J. I.
,
Allison
,
S.
, and
Beshears
,
D. L.
,
2012
, “
Design of Phosphor Thermometry System for Transient High Heat Flux Surface Thermometry
,”
58th International Instrumentation Symposium
, San Diego, CA, pp.
154
185
.
26.
Lamm
,
P. K.
,
2000
, “
A Survey of Regularization Methods for First-Kind Volterra Equations
,”
Surveys on Solution Methods for Inverse Problems
,
D.
Colton
,
H. W.
Engl
,
A.
Louis
,
J. R.
McLaughlin
, and
W.
Rundell
, eds.,
Springer
,
Vienna, New York
, pp.
53
82
.
27.
Kline
,
S.
, and
McClintock
,
A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
28.
Bohling
,
J.
,
2015
, “
Energy Dispersive X-Ray Spectroscopy Analysis of the Two-Layer Test Sample
,” Department of Materials Science and Engineering, University of Tennessee-Knoxville, Knoxville, TN, private communication.
29.
The International Nickel Company
,
1968
,
Mechanical and Physical Properties of the Austenitic Chromium-Nickel Stainless Steels at Elevated Temperatures
, 3rd ed.,
The International Nickel Company
,
New York
.
30.
Özışık
,
M. N.
,
1980
,
Heat Conduction
,
Wiley
, Hoboken, NJ, pp.
246
254
.
31.
Sneddon
,
I.
,
1995
,
Fourier Transforms
,
Dover
,
New York
, p.
19
.
You do not currently have access to this content.