The goal of next generation reactors is to increase energy efficiency in the production of electricity and provide high-temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process. The need for efficiency, compactness, and safety challenge the boundaries of existing heat exchanger technology. Various studies have been performed in attempts to update the secondary heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more efficient industrial processes. Modern compact heat exchangers can provide high compactness, a measure of the ratio of surface area-to-volume of a heat exchange. The microchannel heat exchanger studied here is a plate-type, robust heat exchanger that combines compactness, low pressure drop, high effectiveness, and the ability to operate with a very large pressure differential between hot and cold sides. The plates are etched and thereafter joined by diffusion welding, resulting in extremely strong all-metal heat exchanger cores. After bonding, any number of core blocks can be welded together to provide the required flow capacity. This study explores the microchannel heat exchanger and draws conclusions about diffusion welding/bonding for joining heat exchanger plates, with both experimental and computational modeling, along with existing challenges and gaps. Also, presented is a thermal design method for determining overall design specifications for a microchannel printed circuit heat exchanger for both supercritical (24 MPa) and subcritical (17 MPa) Rankine power cycles.

References

1.
Hesselgreaves
,
J. E.
,
2001
,
Compact Heat Exchangers: Selection, Design and Operation
,
Pergamon Press
,
Oxford, UK
.
2.
Mizia
,
R. E.
,
2010
, “
Scoping Investigation of Diffusion Bonding for NGNP Process Application Heat Exchangers
,” Idaho National Laboratory Report No. INL/PLN-3565.
3.
Heat Transfer International, 2012, retrieved Apr. 30, 2012, http://www.heatxfer.com
4.
American Welding Society (AWS)
,
1969
, “
AWS A3.0 Terms and Definitions
,” AWS Report No. 1910.251.
5.
American Society for Testing and Materials (ASTM)
,
1993
, “
Fundamentals of Diffusion Bonding
,”
ASTM Handbook
, Vol.
6
: Welding, Brazing, and Soldering,
ASTM International
,
Materials Park, OH
.
6.
Miller
,
T.
,
2012
, personal communication, Oregon State University.
7.
Mylavarapu
,
S. K.
,
Unocic
,
R. R.
,
Sun
,
X.
, and
Christensen
,
R. N.
,
2009
, “
On the Microstructural and Mechanical Characterization of Diffusion Bonded Alloy 617 Plate Specimens for High-Temperature Compact Heat Exchangers
,” Transactions of American Nuclear Society, American Nuclear Society Winter Meeting, Washington, DC, Nov. 15–19.
8.
Totemeier
,
T. C.
,
Lian
,
H.
,
Clark
,
D. E.
, and
Simpson
,
J. A.
,
2005
, “
Microstructure and Strength Characteristics of Alloy 617 Welds
,” Idaho National Laboratory Report No. INL/EXT-05-00488.
9.
Dupont
,
J. N.
,
Lippold
,
J. C.
, and
Kiser
,
S. D.
,
2009
,
Welding Metallurgy and Weldability of Nickel-Based Alloys
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
10.
Donachie
,
M. J.
, and
Donachie
,
S. J.
,
2002
,
Superalloys—A Technical Guide
, 2nd ed.,
ASTM International
,
Materials Park, OH
.
11.
Nicholas
,
M. G.
,
1998
,
Joining Processes—Introduction to Brazing and Diffusion Bonding
,
Kluwer Academic Publishers
, Dordrecht,
The Netherlands
.
12.
Wu
,
C. F. J.
, and
Hamada
,
M. S.
,
2009
,
Experiments: Planning, Analysis, and Optimization
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
13.
Saunders
,
N.
, and
Miodownik
,
A. P.
,
1998
,
CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide
,
Pergamon Press
,
New York
.
14.
Hillert
,
M.
,
2007
,
Phase Equilibria, Phase Diagrams, and Phase Transformations
,
Cambridge University Press
,
Cambridge, UK
.
15.
Liu
Z.-K.
,
2009
, “
A Materials Research Paradigm Driven by Computation
,”
JOM
,
61
(
10
), pp.
18
20
.10.1007/s11837-009-0143-2
16.
Campbell
,
C. E.
,
Boettinger
,
W. J.
, and
Kattner
,
U. R.
,
2002
, “
Development of a Diffusion Mobility Database for Ni-Base Superalloys
,”
Acta Mater.
,
50
(
4
), pp.
775
792
.10.1016/S1359-6454(01)00383-4
17.
Liu
,
Z. K.
, and
Chen
,
L. Q.
,
2006
,
Applied Computational Materials Modeling: Theory, Experiment, and Simulations
, G. Bozzolo, ed.,
Springer
,
New York
, NY.
18.
Yoon
,
J. W.
,
Barlat
,
F.
,
Weiland
,
H.
,
Glazoff
,
M. V.
, and
Dick
,
R. E.
,
2007
, “
State of the Art for Crystal Plasticity Based Modeling
,” Alcoa Technical Report No. 07-201.
19.
Glazoff
,
M. V.
,
Rashkeev
,
S. N.
,
Pyt'ev
,
Y. P.
,
Yoon
,
J. W.
, and
Sheu
,
S.
,
2009
, “Interplay Between Plastic Deformations and Optical Properties of Metal Surfaces: A Multiscale Study,”
Appl. Phys. Lett.
,
95
(
8
), p.
084106
.10.1063/1.3213391
20.
ASTM Standard B408-06, 2011,
Standard Specification of Nickel-Iron-Chromium Alloy Rod and Bar
,
ASTM International
,
West Conshohocken, PA
.
21.
Shi
,
P.
, and
Sundman
,
B.
, eds.,
2010
,
thermo-calc Classic Version User's Guide
,
ThermoCalc Software AB
.
22.
Special Metals Corporation, 2005, “Inconel® Alloy 617,” retrieved Apr. 30, 2012, Publication No. SMC-029, http://www.specialmetals.com/documents/Inconel%20alloy%20617.pdf
23.
Haynes International, Inc., 2002, “Hastelloy® N Alloy,” retrieved Apr. 30, 2012, http://www.haynesintl.com/pdf/h2052.pdf
24.
Special Metals Corporation, 2005, “Incoloy® Alloy 800H and 800HT,” retrieved Apr. 30, 2012, Publication No. SMC-047, http://www.specialmetals.com/documents/Incoloy%20alloys%20800H%20800HT.pdf
25.
Shi
,
P.
, and
Sundman
,
B.
, eds.,
2010
,
thermo-calc dictra Version 25 User's Guide
,
Thermo-Calc Software AB
.
26.
Borgenstam
,
A.
,
Höglund
,
L.
,
Ågren
,
J.
, and
Engström
,
A.
,
2000
, “
dictra, a Tool for Simulation of Diffusional Transformations in Alloys
,”
J. Phase Equilib.
,
21
(
3
), pp.
269
280
.10.1361/105497100770340057
27.
Tavassoli
,
A. A.
, and
Colombe
,
G.
,
1978
, “
Mechanical and Microstructural Properties of Alloy 800
,”
Metall. Mater. Trans. A
,
9
(
9
), pp.
1203
1211
.10.1007/BF02652243
28.
Wang
,
X.
,
Brünger
,
E.
, and
Gottstein
,
G.
,
2000
, “
Microstructure Characterization and Dynamic Recrystallization in an Alloy 800H
,”
Mater. Sci. Eng. A
,
290
(
1–2
), pp.
180
185
.10.1016/S0921-5093(00)00915-1
29.
Czyrska-Filemonowicz
,
A.
, and
Spiradek
,
K.
,
1983
, “
The Influence of High Temperature Ageing on the Structure of Alloy 800
,”
Materialwissenschaft Werkstofftechnik
,
14
(
12
), pp.
417
421
.10.1002/mawe.19830141208
30.
Morral
,
J. E.
,
Jin
,
C.
,
Engström
,
A.
, and
Ågren
,
J.
,
1996
, “
Three Types of Planar Boundaries in Multiphase Diffusion Couples
,”
Scr. Mater.
,
34
(
11
), pp.
1661
1666
.10.1016/1359-6462(96)00038-3
31.
Hopfe
,
W. D.
, and
Morral
,
J. E.
,
1994
, “
Zigzag Diffusion Paths in Multiphase Diffusion Couples
,”
Acta Metall. Mater.
,
42
(
11
), pp.
3887
3894
.10.1016/0956-7151(94)90454-5
32.
Dewson
,
S. J.
, and
B.
Thonon
,
2003
, “
The Development of High Efficiency Heat Exchangers for Helium Gas Cooled Reactors,
Proceedings of the International Congress on Advances in Nuclear Power Plants
,
Cordoba
,
Spain
, May 4–7, Paper No.
3213
.
33.
Dostal
,
V.
,
Driscoll
,
M. J.
, and
Hejzlar
,
P.
,
2004
, “
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,” Massachusetts Institute of Technology Report No. MIT-ANP-TR-100.
34.
Kim
,
E. S.
,
Oh
,
C. H.
, and
Sherman
,
S.
,
2007
, “
Simplified Optimum Sizing and Cost Analysis for Compact Heat Exchanger in VHTR
,”
Nucl. Eng. Des.
,
238
(
10
), pp.
2635
2647
.10.1016/j.nucengdes.2008.05.012
35.
Heatric, 2012, “General Heat Exchanger Overview,” retrieved Apr. 30, 2012, http://www.heatric.com/diffusion_bonded_exchangers.html
36.
Dittus
,
P. W.
, and
Boelter
,
L. M. K.
,
1930
, “
Heat Transfer in Automobile Radiators of the Tubular Type
,” Univ. Calif. Publ. Eng.,
2
(
13
), pp.
443
461
[
Int. Commun. Heat Mass Transfer
,
12
(
1
), pp.
3
22
(
1985
)].10.1016/0735-1933(85)90003-X
37.
Idelchik
,
I. E.
, and
Fried
,
E.
,
1986
,
Handbook of Hydraulic Resistance
, 2nd ed.,
Hemisphere Publishing
,
New York
, NY.
38.
ASME Boiler and Pressure Vessel Code, 2007, “Welding and Brazing Qualifications,” Section 9.
39.
ASME Boiler and Pressure Vessel Code, 2011, “High Temperature Reactors,” Rules for Construction of Nuclear Power Plant Components, Section 3, Division 5.
40.
ASME Boiler and Pressure Vessel Code, 2007, “Rules for Diffusion Bonded, Flat Plate, Microchannel Heat Exchanger,” Case 2437-1, Section 8, Division 1.
41.
ASME Boiler and Pressure Vessel Code, 2011, “Diffusion Bonding,” Case 2621, Section 8, Division 1.
You do not currently have access to this content.