Abstract

The liquid floated gyro (LFG) is an inertial instrument widely used in aviation, aerospace, navigation, and other high-tech fields, with the advantages of high accuracy and good in-orbit reliability. The filling of internal floating oil is a key process in the manufacture of LFG, however, due to the limitation of technology level, environmental conditions, and other factors, the floating oil may be mixed with a certain amount of air, which affects the rheological characteristics of the oil, thus leading to the accuracy drift of the gyro instrument. Therefore, this paper analyzes the effect of air content on the fluid characteristics of the gyro oil by using the computational fluid dynamics method. The results show that the air content has a significant effect on the oil dynamics: when the air content increases from 0% to 3%, the average flow velocity of the oil decreases by 4.15%, and the viscous interference torque increases by 0.02%, which reduces the stability of the instrument accuracy to a certain extent, so the generation of air bubbles should be avoided or necessary measures should be taken to remove air bubbles during the oil filling process.

References

1.
Teng
,
H.
,
Wei
,
J.
, and
Ge
,
Y.
,
2013
, “
Contamination Control in Assembly of Space-Level Liquid Floated Gyroscope
,”
J. Chin. Inert. Technol.
,
21
(
01
), pp.
97
100
.
2.
Gu
,
M.
,
Zhang
,
J.
,
Fan
,
J.
, and
Su
,
Y.
,
2023
, “
Fluid Solid Thermal Simulation and Characteristic Analysis of Liquid Floated Gyroscope
,”
Navig. Control
,
22
(
05
), pp.
66
72
.
3.
Lu
,
Y.
,
1992
,
Inertial Devices
,
China Astronautic Publishing House
,
Beijing
.
4.
Liu
,
J.
,
Niu
,
W.
,
Wei
,
Z.
, and
Li
,
L.
,
2019
, “
Inertial Device Engineering Calculation Simulation Difficulties and Application Requirements
,”
Proceedings of the Academic Symposium on Inertial Technology and Intelligent Navigation
,
Kunming, Yunnan, China
,
Oct. 23
, pp.
101
105
.
5.
Abivin
,
P.
,
Hénaut
,
I.
,
Argillier
,
J. F.
, and
Moan
,
M.
,
2008
, “
Viscosity Behavior of Foamy Oil: Experimental Study and Modeling
,”
Pet. Sci. Technol.
,
26
(
13
), pp.
1545
1558
.
6.
An
,
Q.
,
Zhou
,
Y.
,
Cheng
,
X.
, and
Quan
,
Y.
,
1995
, “
Study on the Methods of Calibrating the Bubble Content of Bubbly Oil
,”
Lubr. Eng.
,
03
, pp.
27
30
.
7.
An
,
Q.
,
1996
, “
Present Situation of Study on the Rheologic Properties of Bubbly Oil
,”
Lubr. Eng.
,
01
, pp.
10
12
.
8.
An
,
Q.
,
Zhou
,
Y.
, and
Quan
,
Y.
,
1996
, “
Study on the Static Properties of Journal Bearing Lubricated With Bubbly Oil
,”
J. Zhejiang Univ.
,
03
, pp.
237
243
.
9.
An
,
Q.
, and
Zhou
,
Y.
,
1996
, “
A New Rheological Model for Bubbly Oil
,”
Acta Petrol. Sin.
,
01
, pp.
70
75
.
10.
Wang
,
J.
, and
An
,
Q.
,
2009
, “
Effects of Void Fraction on Lubricating Properties of Oil Air Lubrication
,”
J. East China Univ. Sci. Technol.
,
35
(
06
), pp.
932
935
.
11.
Wen
,
T.
, and
Che
,
D.
,
2003
, “
Analysis of Void Fraction Distribution’s Influence Factors in Bubbly Flows
,”
The 6th National Conference on Low Temperature and Refrigeration Engineering
,
Xi’an, Shanxi, China
,
Nov. 30–Dec. 3
, pp.
414
417
.
12.
Zhang
,
Z.
,
Li
,
Y.
,
Chen
,
S.
, and
Yu
,
R.
,
2019
, “
Effect of Void Fraction on Viscosity of Lubricating Oil
,”
J. Henan Univ. Sci. Technol.
,
40
(
02
), pp.
23
27
.
13.
Yang
,
H.
,
Wang
,
X.
, and
Du
,
J.
,
2015
, “
Constitutive Equation of Bubbly Oil Considering Shear Rate and Temperature
,”
J. Mech. Eng.
,
51
(
02
), pp.
178
182
.
14.
Liu
,
L.
,
2001
, “
Study on Correlation of Performance Parameters With Gas Fraction for a Two-Screw Multi-phase Pump
,”
Fluid Mach.
,
05
, pp.
8
11
.
15.
Yao
,
X.
,
Shi
,
G.
,
Liu
,
Z.
, and
Wang
,
B.
,
2020
, “
Effects of Gas Volume Fraction on the Stress and Strain of the Multiphase Pump Blade
,”
J. Eng. Therm. Energy Power
,
35
(
08
), pp.
45
53
.
16.
Zheng
,
Z.
,
Lou
,
Z.
, and
Wu
,
E.
,
2021
, “
Analysis on Flow Field of Angle Seat Valve With Different Vapor Phase Fraction
,”
Hydraul. Pneum. Seals
,
41
(
02
), pp.
42
46
.
17.
Zhang
,
S.
,
Yang
,
S.
,
Li
,
R.
, and
Zhang
,
Z.
,
2021
, “
Characteristic Analysis of Cylindrical Hydrodynamic/Hydrostatic Bearing Under Low Gas Fraction
,”
J. Aerosp. Power
,
36
(
04
), pp.
741
750
.
18.
Yang
,
C.
,
Xu
,
Q.
,
Chang
,
L.
, and
Guo
,
L.
,
2021
, “
Numerical Study on the Effect of Gas Void Fraction on the Performance of Deep-Sea Multiphase Pump
,”
J. Eng. Thermophys.
,
42
(
06
), pp.
1479
1485
.
19.
Zhu
,
G.
,
Li
,
T.
,
Feng
,
J.
,
Yan
,
S.
,
Li
,
K.
, and
Luo
,
X.
,
2022
, “
Influence of Gas Volume Fraction on the Shafting Vibration of Multiphase Pump at the Condition of Low Discharge
,”
Trans. Chin. Soc. Agric. Eng.
,
38
(
03
), pp.
22
29
.
20.
Zhang
,
Y.
,
Wang
,
Y.
, and
Lu
,
B.
,
2023
, “
Thermal Elastohydrodynamic Lubrication of Herringbone Gear Considering the Effect of Oil Gas Mixture
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
6
), p.
061003
.
21.
Jordaan
,
H.
,
Stephan Heyns
,
P.
, and
Hoseinzadeh
,
S.
,
2021
, “
Numerical Development of a Coupled One-Dimensional/Three-Dimensional Computational Fluid Dynamics Method for Thermal Analysis With Flow Maldistribution
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
4
), p.
041017
.
22.
Dutta
,
T.
,
2022
, “
Design and Computational Fluid Dynamics Analysis of a Novel Compact Mixing Chamber in Blast Furnace Ironmaking
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
2
), p.
021004
.
23.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
1995
,
An Introduction to Computational Fluid Dynamics
,
Pearson Education Limited
,
Harlow, England
.
24.
Chung
,
T. J.
,
2002
,
Computational Fluid Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
25.
Yang
,
S.
, and
Tao
,
W.
,
2006
,
Heat Transfer
, 4th ed.,
Higher Education Press
,
Beijing
.
26.
Tannehill
,
J. C.
,
Anderson
,
D. A.
,
Pletcher
,
R. H.
, and
Francis
,
T.
,
1984
,
Computational Fluid Mechanics and Heat Transfer
,
Hemisphere Publishing Corporation
,
Washington, DC
.
You do not currently have access to this content.