Abstract

Coal-fired power plants are commonly used as adjustable power sources to complement the fluctuating output of wind and solar energy. The investigation is required to determine the flexible peak-shaving capabilities of coal-fired boilers. A modified scheme for a lignite-fired power plant to further improve the primary air temperature using the outlet steam from the low-temperature reheater is studied while increasing the inlet flue gas temperature of the air preheater is considered the conventional scheme. Thermodynamic models of the power plant are constructed using ebsilon software. The operational characteristics of both schemes are compared under 30% turbine heat acceptance (THA)–100%THA conditions and the economic performance of the modified scheme is also evaluated. Results indicate that the modified scheme exhibits superior thermodynamic and economic performances compared to the conventional scheme. The disparity in power generation efficiency between the conventional and modified schemes reaches a maximum of 0.23 percentage points under 75%THA conditions. The net present value of the modified scheme amounts to 4.51 million dollars over the power plant lifespan of 30 years. The modified scheme allows the conventional denitrification catalyst to maintain an optimal temperature range even under 30%THA conditions, resulting in a power generation efficiency only 4.8 percentage points lower than that under 100%THA conditions, thus demonstrating remarkable operational flexibility. This study presents an efficient, cost-effective, and adaptable approach for lignite-fired power plants.

References

1.
BP
,
2023
, “BP Statistical Review of World Energy,” https://www.energyinst.org/statistical-review
2.
Xiang
,
X.
,
Gong
,
G.
,
Wang
,
C.
,
Cai
,
N.
,
Tang
,
K.
, and
Li
,
Y.
,
2021
, “
Thermodynamic Analysis of Hydrogen Production From Coal Char Gasification in Triple-Bed Circulating Fluidized Bed
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
1
), p.
011009
.
3.
Niu
,
Z.
,
Liu
,
G.
,
Yin
,
H.
,
Zhou
,
C.
,
Wu
,
D.
,
Yousaf
,
B.
, and
Wang
,
C.
,
2016
, “
In-Situ FTIR Study of Reaction Mechanism and Chemical Kinetics of a Xundian Lignite During Non-isothermal Low Temperature Pyrolysis
,”
Energy Convers. Manage.
,
124
, pp.
180
188
.
4.
Yu
,
D.
,
Chen
,
M.
,
Wei
,
Y.
,
Niu
,
S.
, and
Xue
,
F.
,
2016
, “
An Assessment on Co-combustion Characteristics of Chinese Lignite and Eucalyptus Bark With TG–MS Technique
,”
Powder Technol.
,
294
, pp.
463
471
.
5.
Sheng
,
C.
,
Duan
,
C.
,
Zhao
,
Y.
,
Zhang
,
P.
, and
Dong
,
L.
,
2017
, “
Separation and Upgrading of Fine Lignite in Pulsed Fluidized Bed. 1. Experimental Study on Lignite Drying Characteristics and Kinetics
,”
Energy Fuels
,
32
(
1
), pp.
922
935
.
6.
Li
,
Z.
,
Miao
,
Z.
,
Shen
,
X.
, and
Li
,
J.
,
2018
, “
Effects of Momentum Ratio and Velocity Difference on Combustion Performance in Lignite-Fired Pulverized Boiler
,”
Energy
,
165
, pp.
825
839
.
7.
Bian
,
C.
,
Huang
,
J.
, and
Sun
,
R.
,
2023
, “
Numerical Optimization of Combustion and NOx Emission in a Retrofitted 600 MWe Tangentially-Fired Boiler Using Lignite
,”
Appl. Therm. Eng.
,
226
, p.
120228
.
8.
Liu
,
M.
,
Yan
,
J.
,
Chong
,
D.
,
Liu
,
J.
, and
Wang
,
J.
,
2013
, “
Thermodynamic Analysis of Pre-drying Methods for Pre-dried Lignite-Fired Power Plant
,”
Energy
,
49
, pp.
107
118
.
9.
Xu
,
C.
,
Xu
,
G.
,
Yang
,
Y.
,
Zhao
,
S.
,
Zhang
,
K.
, and
Zhang
,
D.
,
2015
, “
An Improved Configuration of Low-Temperature Pre-drying Using Waste Heat Integrated in an Air-Cooled Lignite Fired Power Plant
,”
Appl. Therm. Eng.
,
90
, pp.
312
321
.
10.
Atsonios
,
K.
,
Violidakis
,
I.
,
Agraniotis
,
M.
,
Grammelis
,
P.
,
Nikolopoulos
,
N.
, and
Kakaras
,
E.
,
2015
, “
Thermodynamic Analysis and Comparison of Retrofitting Pre-drying Concepts at Existing Lignite Power Plants
,”
Appl. Therm. Eng.
,
74
, pp.
165
173
.
11.
Xu
,
C.
,
Xu
,
G.
,
Zhao
,
S.
,
Zhou
,
L.
,
Yang
,
Y.
, and
Zhang
,
D.
,
2015
, “
An Improved Configuration of Lignite Pre-Drying Using a Supplementary Steam Cycle in a Lignite Fired Supercritical Power Plant
,”
Appl. Energy
,
160
, pp.
882
891
.
12.
Zeng
,
D.
,
Hu
,
Y.
,
Gao
,
S.
, and
Liu
,
J.
,
2015
, “
Modelling and Control of Pulverizing System Considering Coal Moisture
,”
Energy
,
80
, pp.
55
63
.
13.
Zhu
,
Y.
,
Guo
,
T.
,
Jing
,
L.
,
Li
,
Y.
,
Jiang
,
X.
, and
Wang
,
P.
,
2018
, “
Research and Transformation of Pulverizing System Output of Lignite Mixedly Burning Boiler
,”
Boiler Technol.
,
49
(
4
), pp.
66
70
.
14.
Chantasiriwan
,
S.
,
2022
, “
Improvement of Conventional Design of Lignite-Fired Thermal Power Plant by Integrating Steam-Air Preheater and Flue Gas Dryer
,”
Energy Convers. Manage. X
,
15
, p.
100272
.
15.
Ma
,
Y.
,
Yuan
,
Y.
,
Jin
,
J.
,
Zhang
,
H.
,
Hu
,
X.
, and
Shi
,
D.
,
2013
, “
An Environment Friendly and Efficient Lignite-Fired Power Generation Process Based on a Boiler With an Open Pulverizing System and the Recovery of Water From Mill-Exhaust
,”
Energy
,
59
, pp.
105
115
.
16.
Han
,
Y.
, and
Sun
,
Y.
,
2020
, “
Collaborative Optimization of Energy Conversion and NOx Removal in Boiler Cold-End of Coal-Fired Power Plants Based on Waste Heat Recovery of Flue Gas and Sensible Heat Utilization of Extraction Steam
,”
Energy
,
207
, p.
118172
.
17.
Tian
,
M.
,
Yang
,
X.
, and
Liu
,
Y.
,
2022
, “
Optimization of Primary Hot Air Heating System of Lignite Fired Boiler
,”
Shandong Electric Power
,
49
(
11
), pp.
91
96
.
18.
Pan
,
S.
,
Mo
,
C.
,
Li
,
W.
, and
Yi
,
G.
,
2020
, “
Technical Study on Application of Primary Hot Air Steam-Heated System for Lignite Firing Boiler Pulverization System
,”
Dongfang Electric Rev.
,
34
(
133
), pp.
27
32
.
19.
Pan
,
S.
,
Li
,
M.
,
Li
,
W.
,
Lin
,
X.
, and
Liu
,
Y.
,
2024
, “
Thermodynamic Analysis of Temperature Boosting of Hot Primary Air in an Ultra-Supercritical Lignite-Fired Power Plant: Scheme Comparison and Performance Enhancement
,”
Asia-Pac. J. Chem. Eng.
,
19
(
5
), p.
3093
.
20.
Han
,
Y.
,
Xu
,
G.
,
Zheng
,
Q.
,
Xu
,
C.
,
Hu
,
Y.
,
Yang
,
Y.
, and
Lei
,
J.
,
2017
, “
New Heat Integration System With Bypass Flue Based on the Rational Utilization of Low-Grade Extraction Steam in a Coal-Fired Power Plant
,”
Appl. Therm. Eng.
,
113
, pp.
460
471
.
21.
Lin
,
X.
,
Li
,
Q.
,
Wang
,
L.
,
Guo
,
Y.
, and
Liu
,
Y.
,
2020
, “
Thermo-Economic Analysis of Typical Thermal Systems and Corresponding Novel System for a 1000 MW Single Reheat Ultra-Supercritical Thermal Power Plant
,”
Energy
,
201
, p.
117560
.
22.
Lin
,
X.
,
Liu
,
Y.
,
Song
,
H.
,
Guan
,
Y.
, and
Wang
,
R.
,
2023
, “
Concept Design, Parameter Analysis, and Thermodynamic Evaluation of a Novel Integrated Gasification Chemical-Looping Combustion Combined Cycle Power Generation System
,”
Energy Convers. Manage.
,
279
, p.
116768
.
23.
Lin
,
X.
,
Song
,
H.
,
Wang
,
L.
,
Guo
,
Y.
, and
Liu
,
Y.
,
2021
, “
Cold-End Integration of Thermal System in a 1000 MW Ultra-supercritical Double Reheat Power Plant
,”
Appl. Therm. Eng.
,
193
, p.
116982
.
24.
Lin
,
X.
,
Meng
,
X.
,
Song
,
H.
, and
Liu
,
Y.
,
2024
, “
Efficiency Improvement and Flexibility Enhancement by Molten Salt Heat Storage for Integrated Gasification Chemical-Looping Combustion Combined Cycle Under Partial Loads
,”
Energy
,
303
, p.
131945
.
25.
Szargut
,
J.
,
Morris
,
D.
, and
Steward
,
F.
,
1988
,
Exergy Analysis of Thermal, Chemical, and Metallurgical Processes
,
Hemisphere Publishing Corporation
,
New York
.
26.
Lin
,
X.
,
Liu
,
Y.
,
Song
,
H.
, and
Liu
,
Y.
,
2023
, “
System Design for 700 °C Power Plants: Integration Scheme and Performance Evaluation
,”
Energy
,
267
, p.
126453
.
27.
Lin
,
Z.
, and
Xu
,
T.
,
2009
,
Practical Boiler Manual
,
Chemical Industry Press
,
Beijing
.
28.
Liu
,
Y.
,
Li
,
Q.
,
Duan
,
X.
,
Zhang
,
Y.
,
Yang
,
Z.
, and
Che
,
D.
,
2018
, “
Thermodynamic Analysis of a Modified System for a 1000 MW Single Reheat Ultra-supercritical Thermal Power Plant
,”
Energy
,
145
, pp.
25
37
.
29.
Jung
,
Y.-J.
,
Cha
,
J.-S.
, and
Kim
,
B.-S.
,
2023
, “
Characteristics of Deactivation and Thermal Regeneration of Nb-Doped V2O5–WO3/TiO2 Catalyst for NH3–SCR Reaction
,”
Environ. Res.
,
227
, p.
115744
.
30.
Ma
,
Y.
,
Yang
,
L.
,
Lu
,
J.
, and
Pei
,
Y.
,
2016
, “
Techno-Economic Comparison of Boiler Cold-End Exhaust Gas Heat Recovery Processes for Efficient Brown-Coal-Fired Power Generation
,”
Energy
,
116
, pp.
812
823
.
You do not currently have access to this content.