Abstract

This paper presents the findings of numerical and experimental investigations into the forced convection heat transfer from horizontal surfaces with straight rectangular fins at Reynolds numbers ranging from 23,600 to 150,000. A test setup was constructed to measure the heat transfer rate from a horizontal surface with a constant number of fins, fin width, and fin length under different flow conditions. Two-dimensional numerical analyses were performed to observe the heat transfer and flow behavior using a computer program developed based on the openfoam platform. The code developed was verified by comparing the numerical results with the experimental results. The effect of geometrical parameters on heat transfer coefficient and Nusselt number was investigated for different fin height and width ratios. Results showed that heat transfer can be increased by modifying the fin structure geometrical parameters. A correlation for Nusselt number was developed and presented for steady-state, turbulent flows over rectangular fin arrays, taking into account varying Prandtl number of fluids such as water liquid, water vapor, CO2, CH4, and air. The correlation developed predicts the Nusselt number with a relative root mean square error of 0.36%. This research provides valuable insights into the effects of varying Prandtl numbers on the efficiency of forced convection cooling and will help in the design and operation of cooling systems. This study is novel in its approach as it takes into account the effect of varying Prandtl numbers on the heat transfer coefficient and Nusselt number and provides a correlation for the same. It will serve as a valuable reference for engineers and designers while designing and operating cooling systems.

References

1.
Mannan
,
K. D.
,
1970
, “
An Experimental Investigation of Rectangular Fins on Horizontal Surfaces
,”
Ph.D. dissertation
,
Ohio State University
,
Columbus, OH
.
2.
Souidi
,
N.
, and
Bontemps
,
A.
,
2001
, “
Countercurrent Gas-Liquid Flow in Plate—Fin Heat Exchangers With Plain and Perforated Fins
,”
Int. J. Heat Fluid Flow
,
22
(
4
), pp.
450
459
.
3.
Dhanawade
,
K. H.
, and
Dhanawade
,
H. S.
,
2010
, “
Enhancement of Forced Convection Heat Transfer From Fin Arrays With Circular Perforation
,”
Frontiers in Automobile and Mechanical Engineering (FAME)
,
Chennai, India
,
Nov. 25–27
, pp.
192
196
.
4.
Hajmohammadi
,
M. R.
,
Doustahadi
,
A.
, and
Ahmadian-Elmi
,
M.
,
2020
, “
Heat Transfer Enhancement by a Circumferentially Non-Uniform Array of Longitudinal Fins Assembled Inside a Circular Channel
,”
Int. J. Heat Mass Transfer
,
158
, p.
120020
.
5.
Awarsarmol
,
U. V.
, and
Pise
,
A. T.
,
2015
, “
An Experimental Investigation of Natural Convection Heat Transfer Enhancement From Perforated Rectangular Fins Array at Different Inclinations
,”
Exp. Therm. Fluid. Sci.
,
68
, pp.
145
154
.
6.
Huang
,
G. J.
,
Wong
,
S. C.
, and
Lin
,
C. P.
,
2014
, “
Enhancement of Natural Convection Heat Transfer From Horizontal Rectangular Fin Arrays With Perforations in Fin Base
,”
Int. J. Therm. Sci.
,
84
, pp.
164
174
.
7.
Gong
,
X.
,
Wang
,
F.
,
Wang
,
H.
,
Tan
,
J.
,
Lai
,
Q.
, and
Han
,
H.
,
2017
, “
Heat Transfer Enhancement Analysis of Tube Receiver for Parabolic Trough Solar Collector With Pin Fin Arrays Inserting
,”
Sol. Energy
,
144
, pp.
185
202
.
8.
He
,
Y. L.
,
Han
,
H.
,
Tao
,
W. Q.
, and
Zhang
,
Y. W.
,
2012
, “
Numerical Study of Heat-Transfer Enhancement by Punched Winglet-Type Vortex Generator Arrays in Fin-and-Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5449
5458
.
9.
Huang
,
C. H.
,
Liu
,
Y. C.
, and
Ay
,
H.
,
2015
, “
The Design of Optimum Perforation Diameters for Pin Fin Array for Heat Transfer Enhancement
,”
Int. J. Heat Mass Transfer
,
84
, pp.
752
765
.
10.
Taji
,
S. G.
,
Parishwad
,
G. V.
, and
Sane
,
N. K.
,
2014
, “
Enhanced Performance of Horizontal Rectangular Fin Array Heat Sink Using Assisting Mode of Mixed Convection
,”
Int. J. Heat Mass Transfer
,
72
, pp.
250
259
.
11.
Dogan
,
M.
, and
Sivrioglu
,
M.
,
2009
, “
Experimental Investigation of Mixed Convection Heat Transfer From Longitudinal Fins in a Horizontal Rectangular Channel: In Natural Convection Dominated Flow Regimes
,”
Energy Convers. Manage.
,
50
(
10
), pp.
2513
2521
.
12.
Zhang
,
S.
,
Li
,
Z.
,
Yan
,
Y.
,
Alston
,
M.
, and
Tian
,
L.
,
2023
, “
Comparative Study on Heat Transfer Enhancement of Metal Foam and Fins in a Shell-and-Tube Latent Heat Thermal Energy Storage Unit
,”
Energy Storage Saving
.
13.
Ahmadi
,
M.
,
Mostafavi
,
G.
, and
Bahrami
,
M.
,
2014
, “
Natural Convection From Rectangular Interrupted Fins
,”
Int. J. Therm. Sci.
,
82
, pp.
62
71
.
14.
Karlapalem
,
V.
, and
Dash
,
S. K.
,
2023
, “
On the Enhancement of Natural Convection Heat Transfer With Multi-branching Fins
,”
Int. J. Therm. Sci.
,
183
, p.
107868
.
15.
Shi
,
S.
,
Niu
,
J.
,
Wu
,
Z.
,
Luo
,
S.
,
Gao
,
X.
,
Fang
,
Y.
, and
Zhang
,
Z.
,
2022
, “
Experimental and Numerical Investigation on Heat Transfer Enhancement of Vertical Triplex Tube Heat Exchanger With Fractal Fins for Latent Thermal Energy Storage
,”
Int. J. Heat Mass Transfer
,
198
, p.
123386
.
16.
Oztop
,
H. F.
,
Varol
,
Y.
, and
Alnak
,
D. E.
,
2009
, “
Control of Heat Transfer and Fluid Flow Using a Triangular Bar in Heated Blocks Located in a Channel
,”
Int. Commun. Heat Mass Transfer
,
36
(
8
), pp.
878
885
.
17.
Tahat
,
M.
,
Kodah
,
Z. H.
,
Jarrah
,
B. A.
, and
Probert
,
S. D.
,
2000
, “
Heat Transfers From Pin-Fin Arrays Experiencing Forced Convection
,”
Appl. Energy
,
67
(
4
), pp.
419
442
.
18.
Adhikari
,
R. C.
,
Wood
,
D. H.
, and
Pahlevani
,
M.
,
2020
, “
Optimizing Rectangular Fins for Natural Convection Cooling Using CFD
,”
Ther. Sci. Eng. Prog.
,
17
, p.
100484
.
19.
Liu
,
X.
,
Wang
,
M.
,
Liu
,
H.
,
Chen
,
W.
, and
Quian
,
S.
,
2021
, “
Numerical Analysis on Heat Transfer Enhancement of Wavy Fin-Tube Heat Exchangers for Air-Conditioning Applications
,”
Appl. Therm. Eng.
,
199
, p.
117597
.
20.
Mei
,
D.
,
Lou
,
X.
,
Qian
,
M.
,
Yao
,
Z.
,
Liang
,
L.
, and
Chen
,
Z.
,
2014
, “
Effect of Tip Clearance on the Heat Transfer and Pressure Drop Performance in the Micro-Reactor With Micro-Pin-Fin Arrays at Low Reynolds Number
,”
Int. J. Heat Mass Transfer
,
70
, pp.
709
718
.
21.
Chang
,
S.-W.
,
Wu
,
H.-W.
,
Guo
,
D.-Y.
,
Shi
,
J.
, and
Chen
,
T.-H.
,
2017
, “
Heat Transfer Enhancement of Vertical Dimpled Fin Array in Natural Convection
,”
Int. J. Heat Mass Transfer
,
106
, pp.
781
792
.
22.
Ayli
,
E.
,
Bayer
,
O.
, and
Aradag
,
S.
,
2016
, “
Experimental Investigation and CFD Analysis of Rectangular Profile Fins in a Square Channel for Forced Convection Regimes
,”
Int. J. Therm. Sci.
,
109
, pp.
279
290
.
23.
Luo
,
L.
,
Yan
,
H.
,
Du
,
W.
,
Su
,
W.
,
Wang
,
S.
, and
Huang
,
D.
,
2022
, “
Numerical Study of a Novel Curved Pin Fin for Heat Transfer Enhancement Within Aeroengine Turbine Blade
,”
Aerospace Sci. Technol.
,
123
, p.
107436
.
24.
Kalantari
,
H.
,
Ghoreşshş-Makiseh
,
S. A.
,
Kurnia
,
J. C.
, and
Sasmito
,
A. P.
,
2021
, “
An Analytical Correlation for Conjugate Heat Transfer in Fin and Tube Exchangers
,”
Int. J. Therm. Sci.
,
164
, p.
106915
.
25.
Homod
,
R. Z.
,
Abood
,
F. A.
,
Shrama
,
S. M.
, and
Alshara
,
A. J.
,
2019
, “
Empirical Correlations for Mixed Convection Heat Transfer Through a Fin Array Based on Various Orientations
,”
Int. J. Therm. Sci.
,
137
, pp.
627
639
.
26.
Mancin
,
S.
,
Zilio
,
C.
,
Rossetto
,
L.
, and
Cavallini
,
A.
,
2012
, “
Foam Height Effects on Heat Transfer Performance of 20 PPI Aluminum Foams
,”
Appl. Therm. Eng.
,
49
, pp.
55
60
.
27.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Heat Mass Transfer
,
4
(
1
), pp.
625
632
.
28.
Stalio
,
E.
,
Angeli
,
D.
, and
Barozzi
,
G. S.
,
2011
, “
Numerical Simulation of Forced Convection Over a Periodic Series of Rectangular Cavities at Low Prandtl Number
,”
Int. J. Heat Fluid Flow
,
32
(
5
), pp.
1014
1023
.
29.
Aldoori
,
W. H.
,
2023
, “
The Effect of Fin Height on Forced Convection Heat Transfer From Rectangular Fin Array
,”
Mater. Today: Proc.
,
80
(
3
), pp.
3181
3188
.
30.
Saeidi
,
R.
,
Noorollahi
,
Y.
,
Chang
,
S.
, and
Yousefi
,
H.
,
2023
, “
A Comprehensive Study of Fin-Assisted Horizontal Ground Heat Exchanger for Enhancing the Heat Transfer Performance
,”
Energy Convers. Manage
,
18
.
31.
Wang
,
H.
,
Fu
,
T.
,
Wang
,
J.
,
Zhang
,
F.
,
Zhang
,
K.
, and
Deng
,
X.
,
2022
, “
Study on Heat Transfer Performance of Fin-and-Tube Heat Exchanger With Elliptical Fins
,”
J. Energy Storage
,
56
, p.
105956
.
32.
Yuan
,
M.
,
Liu
,
G.
,
Zhang
,
X.
,
Zhang
,
W.
,
Yang
,
Y.
,
Song
,
J.
, and
Lim
,
H. C.
,
2023
, “
Heat Transfer Enhancement for Spiral Finned Tubes With Triangular Winglets
,”
Int. J. Heat Mass Transfer
,
205
, p.
123918
.
33.
Jones
,
C. D.
, and
Smith
,
L. F.
,
1970
, “
Optimum Arrangement of Rectangular Fins on Horizontal Surfaces for Free-Convection Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
92
(
1
), pp.
6
10
.
34.
Ko
,
Y. M.
,
Leung
,
C. W.
, and
Probert
,
S. D.
,
1989
, “
Steady-State Free-Convective Cooling of Heat Exchangers With Vertical Rectangular Fins: Effect of Fin Material
,”
Appl. Energy
,
34
(
3
), pp.
181
191
.
35.
Leung
,
C. W.
,
Probert
,
S. D.
, and
Shilston
,
M. J.
,
1985
, “
Heat Exchanger Design: Optimal Uniform Separation Between Rectangular Fins Protruding From a Vertical Rectangular Base
,”
Appl. Energy
,
19
(
4
), pp.
287
299
.
You do not currently have access to this content.