Abstract

Geothermal resource is one of the most promising renewable energies, which is successfully accessed by the enhanced geothermal system (EGS) characterized by a complex fracture network. Therefore, complex fracture networks with hydraulic and natural fractures of different fracture orientations and intensities are established in this study. The natural fractures are randomly distributed in the geothermal reservoir. The working fluid flowing and heat exchange in the geothermal reservoir are simulated by coupling model, considering the effects of temperature variation on the density, viscosity, thermal conductivity and specific heat capacity of working fluid, and the permeability of reservoir matrix. Effects of natural fracture orientation and intensity, position of injection and production wells, and geothermal reservoir permeability on the heat production behavior are analyzed. The simulation reveals that the low-temperature region in the geothermal reservoir could breakthrough along natural fractures. When the direction of injection and production wells is consistent with the orientation range of natural fractures, the reservoir exploitation ratio and the heat extraction rate are the largest, but the temperature stability time of the produced fluid is the shortest and the cooling rate is the fastest. Increasing the intensity of natural fractures is helpful to increase the heat extraction rate, but the temperature of production wells decreases more easily. Increasing the distance perpendicular to the hydraulic fracture can better improve the performance of production wells. High reservoir permeability is not conducive to the stability of production fluid temperature, but can greatly increase the exploitation ratio of the geothermal reservoir.

References

1.
Johnston
,
I. W.
,
Narsilio
,
G. A.
, and
Colls
,
S.
,
2011
, “
Emerging Geothermal Energy Technologies
,”
KSCE J. Civ. Eng.
,
15
(
4
), pp.
643
653
.
2.
Olasolo
,
P.
,
Juárez
,
M. C.
,
Morales
,
M. P.
,
D´Amico
,
S.
, and
Liarte
,
I. A.
,
2016
, “
Enhanced Geothermal Systems (EGS): A Review
,”
Renew. Sustain. Energy Rev.
,
56
, pp.
133
144
.
3.
Lund
,
J. W.
, and
Boyd
,
T. L.
,
2016
, “
Direct Utilization of Geothermal Energy 2015 Worldwide Review
,”
Geothermics
,
60
, pp.
66
93
.
4.
Chen
,
J. L.
, and
Jiang
,
F. M.
,
2015
, “
Designing Multi-Well Layout for Enhanced Geothermal System to Better Exploit Hot Dry Rock Geothermal Energy
,”
Renew. Energy
,
74
, pp.
37
48
.
5.
Jiang
,
G. Z.
,
Wang
,
Y.
,
Shi
,
Y. Z.
,
Zhang
,
C.
,
Tang
,
X. Y.
, and
Hu
,
S. B.
,
2016
, “
Estimate of Hot Dry Rock Geothermal Resource in Daqing Oilfield, Northeast China
,”
Energies
,
9
(
10
), p.
731
.
6.
Lu
,
S. M.
,
2018
, “
A Global Review of Enhanced Geothermal System (EGS)
,”
Renew. Sustain. Energy Rev.
,
81
, pp.
2902
2921
.
7.
Wan
,
Z. J.
,
Zhao
,
Y. S.
, and
Kang
,
J. R.
,
2005
, “
Forecast and Evaluation of Hot Dry Rock Geothermal Resource in China
,”
Renew. Energy
,
30
(
12
), pp.
1831
1846
.
8.
Feng
,
Z. J.
,
Zhao
,
Y. S.
,
Zhou
,
A. C.
, and
Zhang
,
N.
,
2012
, “
Development Program of Hot Dry Rock Geothermal Resource in the Yangbajing Basin of China
,”
Renew. Energy
,
39
(
1
), pp.
490
495
.
9.
Wang
,
G.
,
Li
,
K.
,
Wen
,
D.
,
Lin
,
W.
,
Liu
,
Z.
,
Zhang
,
W.
,
Ma
,
F.
, and
Wang
,
W.
,
2013
, “
Assessment of Geothermal Resources in China
,”
Proceedings of the 38th Workshop on Geothermal Reservoir Engineering
,
Stanford, CA
,
Feb. 11–13
,
Stanford University
.
10.
Zhu
,
J.
,
Hu
,
K.
,
Lu
,
X.
,
Huang
,
X.
,
Liu
,
K.
, and
Wu
,
X.
,
2015
, “
A Review of Geothermal Energy Resources, Development, and Applications in China: Current Status and Prospects
,”
Energy
,
93
, pp.
466
483
.
11.
Zhang
,
S.
,
Huang
,
Z.
,
Huang
,
P.
,
Wu
,
X.
,
Xiong
,
C.
, and
Zhang
,
C.
,
2018
, “
Numerical and Experimental Analysis of Hot Dry Rock Fracturing Stimulation With High-Pressure Abrasive Liquid Nitrogen Jet
,”
J. Pet. Sci. Eng.
,
163
, pp.
156
165
.
12.
Zhang
,
S.
,
Huang
,
Z.
,
Zhang
,
H.
,
Guo
,
Z.
,
Wu
,
X.
,
Wang
,
T.
,
Zhang
,
C.
, and
Xiong
,
C.
,
2018
, “
Experimental Study of Thermal-Crack Characteristics on Hot Dry Rock Impacted by Liquid Nitrogen Jet
,”
Geothermics
,
76
, pp.
253
260
.
13.
Cheng
,
A. H. D.
,
Ghassemi
,
A.
, and
Detournay
,
E.
,
2001
, “
Integral Equation Solution of Heat Extraction From a Fracture in Hot Dry Rock
,”
Int. J. Numer. Anal. Meth.
,
25
(
13
), pp.
1327
1338
.
14.
Zhang
,
F. Z.
,
Jiang
,
P. X.
, and
Xu
,
R. N.
,
2013
, “
System Thermodynamic Performance Comparison of CO2-EGS and Water-EGS Systems
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
236
244
.
15.
Jiang
,
F.
,
Luo
,
L.
, and
Chen
,
J.
,
2013
, “
A Novel Three-Dimensional Transient Model for Subsurface Heat Exchange in Enhanced Geothermal Systems
,”
Int. Commun. Heat Mass Transfer
,
41
, pp.
57
62
.
16.
Jiang
,
F.
,
Chen
,
J.
,
Huang
,
W.
, and
Luo
,
L.
,
2014
, “
A Three-Dimensional Transient Model for EGS Subsurface Thermo-Hydraulic Process
,”
Energy
,
72
, pp.
300
310
.
17.
Tang
,
Y.
,
Ma
,
T.
,
Chen
,
P.
, and
Ranjith
,
P. G.
,
2020
, “
An Analytical Model for Heat Extraction Through Multi-Link Fractures of the Enhanced Geothermal System
,”
Geomech. Geophys. Geo-Energy Geo-Resour.
,
6
(
1
), p.
1
.
18.
Fox
,
D. B.
,
Koch
,
D. L.
, and
Tester
,
J. W.
,
2015
, “
The Effect of Spatial Aperture Variations on the Thermal Performance of Discretely Fractured Geothermal Reservoirs
,”
Geotherm. Energy
,
3
(
1
), p.
21
.
19.
Fu
,
P. C.
,
Hao
,
Y.
,
Walsh
,
S. D. C.
, and
Carrigan
,
C. R.
,
2016
, “
Thermal Drawdown-Induced Flow Channeling in Fractured Geothermal Reservoirs
,”
Rock Mech. Rock Eng.
,
49
(
3
), pp.
1001
1024
.
20.
Sun
,
Z.
,
Zhang
,
X.
,
Xu
,
Y.
,
Yao
,
J.
,
Wang
,
H.
,
Lv
,
S.
,
Sun
,
Z.
,
Huang
,
Y.
,
Cai
,
M.
, and
Huang
,
X.
,
2017
, “
Numerical Simulation of the Heat Extraction in EGS With Thermal-Hydraulic-Mechanical Coupling Method Based on Discrete Fractures Model
,”
Energy
,
120
, pp.
20
33
.
21.
Qu
,
Z. Q.
,
Zhang
,
W.
, and
Guo
,
T. K.
,
2017
, “
Influence of Different Fracture Morphology on Heat Mining Performance of Enhanced Geothermal Systems Based on COMSOL
,”
Int. J. Hydrogen Energy
,
42
(
29
), pp.
18263
18278
.
22.
Vik
,
H. S.
,
Salimzadeh
,
S.
, and
Nick
,
H. M.
,
2018
, “
Heat Recovery From Multiple-Fracture Enhanced Geothermal Systems: the Effect of Thermoelastic Fracture Interactions
,”
Renew. Energy
,
121
, pp.
606
622
.
23.
Chen
,
Y.
,
Ma
,
G. W.
,
Wang
,
H. D.
, and
Li
,
T.
,
2018
, “
Evaluation of Geothermal Development in Fractured Hot Dry Rock Based on Three Dimensional Unified Pipe-Network Method
,”
Appl. Therm. Eng.
,
136
, pp.
219
228
.
24.
Yao
,
J.
,
Zhang
,
X.
,
Sun
,
Z.
,
Huang
,
Z.
,
Liu
,
J.
,
Li
,
Y.
,
Xin
,
Y.
,
Yan
,
X.
, and
Liu
,
W.
,
2018
, “
Numerical Simulation of the Heat Extraction in 3D-EGS With Thermal-Hydraulic-Mechanical Coupling Method Based on Discrete Fractures Model
,”
Geothermics
,
74
, pp.
19
34
.
25.
Shi
,
Y.
,
Song
,
X.
,
Wang
,
G.
,
Li
,
J.
,
Geng
,
L.
, and
Li
,
X.
,
2019
, “
Numerical Study on Heat Extraction Performance of a Multilateral-Well Enhanced Geothermal System Considering Complex Hydraulic and Natural Fractures
,”
Renew. Energy
,
141
, pp.
950
963
.
26.
Chen
,
Y.
,
Ma
,
G.
,
Wang
,
H.
,
Li
,
T.
, and
Wang
,
Y.
,
2019
, “
Application of Carbon Dioxide as Working Fluid in Geothermal Development Considering a Complex Fractured System
,”
Energy Convers. Manage.
,
180
, pp.
1055
1067
.
27.
Guo
,
T. K.
,
Gong
,
F. C.
,
Wang
,
X. Z.
,
Lin
,
Q.
,
Qu
,
Z. Q.
, and
Zhang
,
W.
,
2019
, “
Performance of Enhanced Geothermal System (EGS) in Fractured Geothermal Reservoirs With CO2 as Working Fluid
,”
Appl. Therm. Eng.
,
152
, pp.
215
230
.
28.
Hofmann
,
H.
,
Babadagli
,
T.
,
Yoon
,
J. S.
,
Blöcher
,
G.
, and
Zimmermann
,
G.
,
2016
, “
A Hybrid Discrete/Finite Element Modeling Study of Complex Hydraulic Fracture Development for Enhanced Geothermal Systems (EGS) in Granitic Basements
,”
Geothermics
,
64
, pp.
362
381
.
29.
Cheng
,
Q. L.
,
Wang
,
X. N.
, and
Ghassemi
,
A.
,
2019
, “
Numerical Simulation of Reservoir Stimulation With Reference to the Newberry EGS
,”
Geothermics
,
77
, pp.
327
343
.
30.
Ziegler
,
M.
,
Valley
,
B.
, and
Evans
,
K. F.
,
2015
, “
Characterisation of Natural Fractures and Fracture Zones of the Basel EGS Reservoir Inferred From Geophysical Logging of the Basel-1 Well
,”
Proceeding of the World Geothermal Congress
,
Melbourne, Australia
,
Apr. 19–25
.
31.
Li
,
Q.
,
Ito
,
K.
,
Wu
,
Z.
,
Lowry
,
C. S.
, and
Loheide
S. P.
, II
2009
, “
COMSOL Multiphysics: A Novel Approach to Ground Water Modeling
,”
Ground Water
,
47
(
4
), pp.
480
487
.
32.
Salvi
,
D.
,
Boldor
,
D.
,
Ortego
,
J.
,
Aita
,
G. M.
, and
Sabliov
,
C. M.
,
2010
, “
Numerical Modeling of Continuous Flow Microwave Heating: A Critical Comparison of COMSOL and ANSYS
,”
J. Microw. Power Electromagn. Energy
,
44
(
4
), pp.
187
197
.
33.
Butler
,
S. L.
, and
Sinha
,
G.
,
2012
, “
Forward Modeling of Applied Geophysics Methods Using COMSOL and Comparison With Analytical and Laboratory Analog Models
,”
Comput. Geosci.
,
42
, pp.
168
176
.
34.
Song
,
X.
,
Shi
,
Y.
,
Li
,
G.
,
Yang
,
R.
,
Wang
,
G.
,
Zheng
,
R.
,
Li
,
J.
, and
Lyu
,
Z.
,
2018
, “
Numerical Simulation of Heat Extraction Performance in Enhanced Geothermal System With Multilateral Wells
,”
Appl. Energy
,
218
, pp.
325
337
.
35.
Barends
,
F.
,
2010
, “
Complete Solution for Transient Heat Transport in Porous Media, Following Lauwerier Concept
,”
Proceeding of the SPE Annual Technical Conference and Exhibition
,
Florence, Italy
,
Sept. 20–22
, Paper No. SPE-134670-MS.
You do not currently have access to this content.