Abstract

Two new types of printed circuit heat exchanger (PCHE) channels are proposed based on the typical airfoil fin PCHE channel proposed in literatures (standard channel) to further improve the thermal–hydraulic performances of airfoil fin PCHE channel. The small shuttle fins and oval fins are employed between the adjacent two airfoil fins of two novel channels, respectively. Using supercritical CO2 as the working fluid, the thermal–hydraulic performances and enhancement mechanisms of the novel channels are numerically investigated. The results show that the channel with shuttle fins has the best comprehensive performance. The Nusselt number of the channel with shuttle fins is 6.7–26% larger, and the f-factor is 8.3–18.6% larger than that of the standard channel under the selected conditions, which leads to a 3–19.1% increase in the PEC (comprehensive performance evaluation criteria). The Nusselt number of the channel with oval fins is 9–27.3% larger, and the f-factor is 26.6–43.4% larger than that of the standard channel, which leads to a 1–15.3% increase in the PEC. The applications of small fins between the adjacent two fins can effectively reduce the low-velocity region area and enhance the local disturbance, thereby effectively improving the thermal–hydraulic performance. The enhancement mechanism of the novel fin PCHE channel structure can be well explained by the principle of field synergy. It can be found that the synergies of the temperature gradient field and the velocity field in two novel channels are significantly improved.

References

1.
Yang
,
J.
,
Yang
,
Z.
, and
Duan
,
Y.
,
2020
, “
Off-Design Performance of a Supercritical CO2 Brayton Cycle Integrated With a Solar Power Tower System
,”
Energy
,
201
, p.
117676
.
2.
Yang
,
J.
,
Yang
,
Z.
, and
Duan
,
Y.
,
2022
, “
A Review on Integrated Design and Off-Design Operation of Solar Power Tower System With S-CO2 Brayton Cycle
,”
Energy
,
246
, p.
123348
.
3.
Manente
,
G.
, and
Lazzaretto
,
A.
,
2014
, “
Innovative Biomass to Power Conversion Systems Based on Cascaded Supercritical CO2 Brayton Cycles
,”
Biomass Bioenergy
,
69
, pp.
155
168
.
4.
Cao
,
Y.
,
Dhahad
,
H. A.
,
Hussen
,
H. M.
,
E
,
A. T. T. I. A.
,
Rashidi
,
A.
,
Shamseldin
,
A.
,
Almojil
,
M. A.
,
Almohana
,
S. F.
,
and Alali
,
A. I.
, and
F
,
A.
,
2022
, “
Techno-Economic Investigation and Multi-Criteria Optimization of a Novel Combined Cycle Based on Biomass Gasifier, S-CO2 Cycle, and Liquefied Natural Gas for Cold Exergy Usage
,”
Sustain. Energy Technol. Assess.
,
52
(
Part B
), p.
102187
.
5.
Gao
,
C.
,
Wu
,
P.
,
Shan
,
J.
,
Huang
,
Y.
,
Zhang
,
J.
, and
Wang
,
L.
,
2020
, “
Preliminary Study of System Design and Safety Analysis Methodology for Supercritical Carbon Dioxide Brayton Cycle Direct-Cooled Reactor System
,”
Ann. Nucl. Energy
,
147
, p.
107734
.
6.
Ding
,
H.
,
Lu
,
D. G.
,
Sui
,
D. T.
, and
Zhang
,
Y. L.
,
2022
, “
Development of Transient Thermal-Hydraulic Analysis Code for SCO2-Cooled Reactor Coupled with Brayton Cycle and Its Application
,”
Ann. Nucl. Energy
,
175
, p.
109255
.
7.
Zhu
,
Q.
,
Tan
,
X.
,
Barari
,
B.
,
Caccia
,
M.
,
Strayer
,
A. R.
,
Pishahang
,
M.
,
Sandhage
,
K. H.
, and
Henry
,
A.
,
2021
, “
Design of a 2 MW ZrC/W-Based Molten-Salt-to-sCO2 PCHE for Concentrated Solar Power
,”
Appl. Energy
,
300
, p.
117313
.
8.
Cai
,
W. H.
,
Li
,
Y.
,
Li
,
Q.
,
Wang
,
Y.
, and
Chen
,
J.
,
2022
, “
Numerical Investigation on Thermal–Hydraulic Performance of Supercritical LNG in a Zigzag Mini-Channel of Printed Circuit Heat Exchanger
,”
Appl. Therm. Eng.
,
214
, p.
118760
.
9.
Lee
,
S. W.
,
Shin
,
S. M.
,
Chung
,
S.
, and
Jo
,
H.
,
2022
, “
Evaluation of Thermal-Hydraulic Performance and Economics of Printed Circuit Heat Exchanger (PCHE) for Recuperators of Sodium-Cooled Fast Reactors (SFRs) Using CO2 and N2 as Working Fluids
,”
Nucl. Eng. Technol.
,
54
(
5
), pp.
1874
1889
.
10.
Jeon
,
S.
,
Baik
,
Y.
,
Byon
,
C.
, and
Kim
,
W.
,
2016
, “
Thermal Performance of Heterogeneous PCHE for Supercritical CO2 Energy Cycle
,”
Int. J. Heat Mass Transfer
,
102
, pp.
867
876
.
11.
Liu
,
S.
,
Huang
,
Y.
, and
Wang
,
J.
,
2018
, “
Theoretical and Numerical Investigation on the Fin Effectiveness and the Fin Efficiency of Printed Circuit Heat Exchanger with Straight Channels
,”
Int. J. Therm. Sci.
,
132
, pp.
558
566
.
12.
Ishizuka
,
T.
,
Kato
,
Y.
,
Muto
,
Y.
,
Nikitin
,
K.
,
Lam
,
N.
, and
Hashimoto
,
H.
,
2005
, “
Thermal-Hydraulic Characteristics of a Printed Circuit Heat Exchanger in a Supercritical CO2 Loop
,”
Proceedings of the 11th International Topical Meetings on Nuclear Reactor Thermal–Hydraulics
,
Avignon, France
,
Oct. 2–6
, pp.
218
232
.
13.
Meshram
,
A.
,
Jaiswal
,
A. K.
,
Khivsara
,
S. D.
,
Ortega
,
J. D.
,
Ho
,
C.
,
Bapat
,
R.
, and
Dutta
,
P.
,
2016
, “
Modeling and Analysis of a Printed Circuit Heat Exchanger for Supercritical CO2 Power Cycle Applications
,”
Appl. Therm. Eng.
,
109
(
Part B
), pp.
861
870
.
14.
Ngo
,
T. L.
,
Kato
,
Y.
,
Nikitin
,
K.
, and
Ishizuka
,
T.
,
2007
, “
Heat Transfer and Pressure Drop Correlations of Microchannel Heat Exchangers With S-Shaped and Zigzag Fins for Carbon Dioxide Cycles
,”
Exp. Therm. Fluid Sci.
,
32
(
2
), pp.
560
570
.
15.
Kim
,
D. E.
,
Kim
,
M. H.
,
Cha
,
J. E.
, and
Kim
,
S. O.
,
2008
, “
Numerical Investigation on Thermal–Hydraulic Performance of New Printed Circuit Heat Exchanger Model
,”
Nucl. Eng. Des.
,
238
(
12
), pp.
3269
3276
.
16.
Xu
,
X.
,
Ma
,
T.
,
Li
,
L.
,
Zeng
,
M.
,
Chen
,
Y.
,
Huang
,
Y.
, and
Wang
,
Q.
,
2014
, “
Optimization of Fin Arrangement and Channel Configuration in an Airfoil Fin PCHE for Supercritical CO2 Cycle
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
867
875
.
17.
Kim
,
T. H.
,
Kwon
,
J. G.
,
Yoon
,
S. H.
,
Park
,
H. S.
,
Kim
,
M. H.
, and
Cha
,
J. E.
,
2015
, “
Numerical Analysis of Air-Foil Shaped Fin Performance in Printed Circuit Heat Exchanger in a Supercritical Carbon Dioxide Power Cycle
,”
Nucl. Eng. Des.
,
288
, pp.
110
118
.
18.
Wang
,
W. Q.
,
Qiu
,
Y.
,
He
,
Y. L.
, and
Shi
,
H. Y.
,
2019
, “
Experimental Study on the Heat Transfer Performance of a Molten-Salt Printed Circuit Heat Exchanger With Airfoil Fins for Concentrating Solar Power
,”
Int. J. Heat Mass Transfer
,
135
, pp.
837
846
.
19.
Shi
,
H. Y.
,
Li
,
M. J.
,
Wang
,
W. Q.
,
Qiu
,
Y.
, and
Tao
,
W. Q.
,
2020
, “
Heat Transfer and Friction of Molten Salt and Supercritical CO2 Flowing in an Airfoil Channel of a Printed Circuit Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
150
, p.
119006
.
20.
Zhao
,
Z.
,
Zhang
,
Y.
,
Chen
,
X.
,
Ma
,
X.
,
Yang
,
S.
, and
Li
,
S.
,
2020
, “
Experimental and Numerical Investigation of Thermal-Hydraulic Performance of Supercritical Nitrogen in Airfoil Fin Printed Circuit Heat Exchanger
,”
Appl. Therm. Eng.
,
168
, p.
114829
.
21.
Chen
,
F.
,
Zhang
,
L.
,
Huai
,
X.
,
Li
,
J.
,
Zhang
,
H.
, and
Liu
,
Z.
,
2017
, “
Comprehensive Performance Comparison of Airfoil Fin PCHEs With NACA 00XX Series Airfoil
,”
Nucl. Eng. Des.
,
315
, pp.
42
50
.
22.
Cui
,
X.
,
Guo
,
J.
,
Huai
,
X.
,
Cheng
,
K.
,
Zhang
,
H.
, and
Xiang
,
M.
,
2018
, “
Numerical Study on Novel Airfoil Fins for Printed Circuit Heat Exchanger Using Supercritical CO2
,”
Int. J. Heat Mass Transfer
,
121
, pp.
354
366
.
23.
Han
,
Z. X.
,
Guo
,
J.
,
Zhang
,
H.
,
Chen
,
J.
,
Huai
,
X.
, and
Cui
,
X.
,
2021
, “
Experimental and Numerical Studies on Novel Airfoil Fins Heat Exchanger in Flue Gas Heat Recovery System
,”
Appl. Therm. Eng.
,
192
, p.
116939
.
24.
Zhang
,
H.
,
Guo
,
J.
,
Cui
,
X.
,
Zhou
,
J.
,
Huai
,
X.
,
Zhang
,
H.
,
Cheng
,
K.
, and
Han
,
Z.
,
2021
, “
Experimental and Numerical Investigations of Thermal-Hydraulic Characteristics in a Novel Airfoil Fin Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
175
, p.
121333
.
25.
Guo
,
Z. Y.
,
Tao
,
W. Q.
, and
Shah
,
R. K.
,
2005
, “
The Field Synergy (Coordination) Principle and Its Applications in Enhancing Single Phase Convective Heat Transfer
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1797
1807
.
26.
Li
,
F.
,
Zhu
,
W.
, and
He
,
H.
,
2019
, “
Numerical Optimization on Microchannel Flow and Heat Transfer Performance Based on Field Synergy Principle
,”
Int. J. Heat Mass Transfer
,
130
, pp.
375
385
.
27.
Sun
,
X. Y.
,
Hua
,
L. J.
,
Dai
,
Y. J.
,
Ge
,
T. S.
, and
Wang
,
R. Z.
,
2021
, “
Field Synergy Analysis on Heat and Moisture Transfer Processes of Desiccant Coated Heat Exchanger
,”
Int. J. Therm. Sci.
,
164
, p.
106889
.
28.
Li
,
F.
,
Zhu
,
W.
, and
He
,
H.
,
2019
, “
Field Synergy Analysis on Flow and Heat Transfer Characteristics of Nanofluid in Microchannel With Non-Uniform Cavities Configuration
,”
Int. J. Heat Mass Transfer
,
144
, p.
118617
.
29.
Tao
,
Y. B.
,
He
,
Y. L.
,
Huang
,
J.
,
Wu
,
Z. G.
, and
Tao
,
W. Q.
,
2007
, “
Three-Dimensional Numerical Study of Wavy Fin-and-Tube Heat Exchangers and Field Synergy Principle Analysis
,”
Int. J. Heat Mass Transfer
,
50
(
5–6
), pp.
1163
1175
.
30.
Guo
,
J.
, and
Huai
,
X.
,
2016
, “
Numerical Investigation of Helically Coiled Tube From the Viewpoint of Field Synergy Principle
,”
Appl. Therm. Eng.
,
98
, pp.
137
143
.
31.
Liu
,
Y. P.
,
Wang
,
Y.
, and
Huang
,
D. G.
,
2019
, “
Supercritical CO2 Brayton Cycle: A State-of-the-Art Review
,”
Energy
,
189
, p.
115900
.
32.
Chu
,
W.
,
Li
,
X.
,
Ma
,
T.
,
Zeng
,
M.
, and
Wang
,
Q.
,
2016
, “
Heat Transfer and Pressure Drop Performance of Printed Circuit Heat Exchanger With Different Fin Structures (in Chinese)
,”
Chin. Sci. Bull.
,
62
(
16
), pp.
1788
1794
.
33.
Ma
,
T.
,
Xin
,
F.
,
Li
,
L.
,
Xu
,
X. Y.
,
Chen
,
Y. T.
, and
Wang
,
Q. W.
,
2015
, “
Effect of Fin-Endwall Fillet on Thermal Hydraulic Performance of Airfoil Printed Circuit Heat Exchanger
,”
Appl. Therm. Eng.
,
89
, pp.
1087
1095
.
34.
Fu
,
Q.
,
Ding
,
J.
,
Lao
,
J.
,
Wang
,
W.
, and
Lu
,
J.
,
2019
, “
Thermal-Hydraulic Performance of Printed Circuit Heat Exchanger With Supercritical Carbon Dioxide Airfoil Fin Passage and Molten Salt Straight Passage
,”
Appl. Energy
,
247
, pp.
594
604
.
35.
NIST
,
2013
,
Thermophysical Properties of Fluid Systems
,
National Institute of Standards and Technology
,
Gaithersburg, MD
, http://webbook.nist.gov/chemistry/fluid/, Accessed July 10, 2015.
You do not currently have access to this content.