Abstract

A topology optimization strategy with coupled fluid–solid interaction was proposed to maximize the cooling efficiency of a kind of structure applied for scramjets. The Galerkin finite element method (FEM) is used to solve the forced convective heat transfer, and the rational approximation of material properties (RAMP) method combined with the globally convergent method of moving asymptotes (GCMMA) method are used to solve the topological optimization models with different boundary conditions and objective functions. Examples are provided to demonstrate the validity and effectiveness of the optimization strategy. The optimal flow passages of scramjet structures are achieved successfully. Compared with a baseline structure with rectangular straight passages, the optimized flow passages significantly reduce the averaged bulk temperature and pressure loss, and the bulk temperature is more uniform to avoid the occurrence of concentrated high-temperature areas. With the Reynolds number changing from 1000 to 1750, the heat transfer performance of the three-dimensional topology-optimized structure increases by 16.79% to 20.82%.

References

1.
Rao
,
R. V.
, and
Saroj
,
A.
,
2018
, “
Constrained Economic Optimization of Shell-and-Tube Heat Exchangers Using a Self-adaptive Multipopulation Elitist-Jaya Algorithm
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
4
), p.
041001
.
2.
Chi
,
Z. R.
,
Liu
,
H. Q.
, and
Zang
,
S. S.
,
2018
, “
Multi-Objective Optimization of the Impingement-Film Cooling Structure of a Gas Turbine Endwall Using Conjugate Heat Transfer Simulations
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
2
), p.
021004
.
3.
Abdelsalam
,
Y. O.
,
Alimohammadi
,
S.
, and
Persoons
,
T.
,
2020
, “
The Application of Evolutionary Algorithms in Multi-Objective Design and Optimization of Air Cooled Heatsinks
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
2
), p.
021003
.
4.
Yan
,
S. N.
,
Wang
,
F. W.
,
Hong
,
J.
, and
Sigmund
,
O.
,
2019
, “
Topology Optimization of Microchannel Heat Sinks Using a Two-Layer Model
,”
Int. J. Heat Mass Transfer
,
143
, p.
118462
.
5.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
6.
Yoon
,
G. H.
,
2020
, “
Topology Optimization Method With Finite Elements Based on the k-ε Turbulence Model
,”
Comput. Methods Appl. Mech. Eng.
,
361
, p.
112784
.
7.
Zhao
,
J. Q.
,
Zhang
,
M.
,
Zhu
,
Y.
,
Cheng
,
R.
, and
Wang
,
L. J.
,
2021
, “
Topology Optimization of Turbulent Forced Convective Heat Sinks Using a Multi–layer Thermofluid Model
,”
Struct. Multidiscipl. Optim.
,
64
(
6
), pp.
3835
3859
.
8.
,
L. F. N.
,
Yamabe
,
P. V. M.
,
Souza
,
B. C.
, and
Silva
,
E. C. N.
,
2021
, “
Topology Optimization of Turbulent Rotating Flows Using Spalart–Allmaras Model
,”
Comput. Methods Appl. Mech. Eng.
,
373
, p.
113551
.
9.
Gersborg-Hansen
,
A.
,
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2006
, “
Topology Optimization of Heat Conduction Problems Using the Finite Volume Method
,”
Struct. Multidiscipl. Optim.
,
31
(
4
), pp.
251
259
.
10.
Borrvall
,
T.
, and
Petersson
,
J.
,
2003
, “
Topology Optimization of Fluids in Stokes Flow
,”
Int. J. Numer. Methods Fluids
,
41
(
1
), pp.
77
107
.
11.
Yoon
,
G. H.
,
2010
, “
Topological Design of Heat Dissipating Structure With Forced Convective Heat Transfer
,”
J. Mech. Sci. Technol.
,
24
(
6
), pp.
1225
1233
.
12.
Sun
,
S. C.
,
Liebersbach
,
P.
, and
Qian
,
X. P.
,
2019
, “
Large Scale 3d Topology Optimization of Conjugate Heat Transfer
,”
Proceedings of the 18th IEEE InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
,
Las Vegas, NV
,
May 28–31
, Paper No. 18899340, pp.
1
6
.
13.
Joo
,
Y.
,
Lee
,
I.
, and
Kim
,
S. J.
,
2017
, “
Topology Optimization of Heat Sinks in Natural Convection Considering the Effect of Shape-Dependent Heat Transfer Coefficient
,”
Int. J. Heat Mass Transfer
,
109
, pp.
123
133
.
14.
Sato
,
Y.
,
Yaji
,
K.
,
Izui
,
K.
,
Yamada
,
T.
, and
Nishiwaki
,
S.
,
2018
, “
An Optimum Design Method for a Thermal-Fluid Device Incorporating Multi-objective Topology Optimization With an Adaptive Weighting Scheme
,”
ASME J. Mech. Des.
,
140
(
3
), p.
031402
.
15.
Haertel
,
J. H. K.
, and
Nellis
,
G. F.
,
2017
, “
A Fully Developed Flow Thermofluid Model for Topology Optimization of 3d-Printed Air-Cooled Heat Exchangers
,”
Appl. Therm. Eng.
,
119
, pp.
10
24
.
16.
Koga
,
A. A.
,
Lopes
,
E. C. C.
,
Nova
,
H. F. V.
,
De Lima
,
C. R.
, and
Silva
,
E. C. N.
,
2013
, “
Development of Heat Sink Device by Using Topology Optimization
,”
Int. J. Heat Mass Transfer
,
64
, pp.
759
772
.
17.
Lei
,
T.
,
Alexandersen
,
J.
,
Lazarov
,
B. S.
, and
Wang
,
F.
,
Haertel,
J. H. K.
,
De Angelis
,
S.
,
Sanna
,
S.
,
Sigmund
,
O.
, and
Engelbrecht
,
K.
,
2018
, “
Investment Casting and Experimental Testing of Heat Sinks Designed by Topology Optimization
,”
Int. J. Heat Mass Transfer
,
127
, pp.
396
412
.
18.
Zeng
,
S.
,
Kanargi
,
B.
, and
Lee
,
P. S.
,
2018
, “
Experimental and Numerical Investigation of a Mini Channel Forced Air Heat Sink Designed by Topology Optimization
,”
Int. J. Heat Mass Transfer
,
121
, pp.
663
679
.
19.
Kontoleontos
,
E. A.
,
Papoutsis-Kiachagias
,
E. M.
,
Zymaris
,
A. S.
,
Papadimitriou
,
D. I.
, and
Giannakoglou
,
K. C.
,
2013
, “
Adjoint-Based Constrained Optimization for Viscous Flows, Including Heat Transfer
,”
Eng. Optim.
,
45
(
8
), pp.
941
961
.
20.
Yaji
,
K.
,
Yamada
,
T.
,
Kubo
,
S.
,
Izui
,
K.
, and
Nishiwaki
,
S.
,
2015
, “
A Topology Optimization Method for a Coupled Thermal–Fluid Problem Using Level Set Boundary Expressions
,”
Int. J. Heat Mass Transfer
,
81
, pp.
878
888
.
21.
Behrou
,
R.
,
Pizzolato
,
A.
, and
Forner-Cuenca
,
A.
,
2019
, “
Topology Optimization as a Powerful Tool to Design Advanced PEMFCs Flow Fields
,”
Int. J. Heat Mass Transfer
,
135
, pp.
72
92
.
22.
Li
,
H.
,
Ding
,
X. H.
,
Meng
,
F. Z.
,
Jing
,
D. L.
, and
Xiong
,
M.
,
2019
, “
Optimal Design and Thermal Modelling for Liquid-Cooled Heat Sink Based on Multi-objective Topology Optimization: An Experimental and Numerical Study
,”
Int. J. Heat Mass Transfer
,
144
, p.
118638
.
23.
Zhuang
,
C.
,
Xiong
,
Z.
, and
Ding
,
H.
,
2013
, “
Topology Optimization of the Transient Heat Conduction Problem on a Triangular Mesh
,”
Heat Transfer, Part B
,
64
(
3
), pp.
239
262
.
24.
Deng
,
Y.
,
Liu
,
Z.
,
Zhang
,
P.
,
Liu
,
Y.
, and
Wu
,
Y.
,
2011
, “
Topology Optimization of Unsteady Incompressible Navier-Stokes Flows
,”
J. Comput. Phys.
,
230
(
17
), pp.
6688
6708
.
25.
Deng
,
Y.
,
Liu
,
Z.
, and
Wu
,
Y.
,
2011
, “
Topology Optimization of Steady and Unsteady Incompressible Navier-Stokes Flows Driven by Body Forces
,”
Struct. Multidiscipl. Optim.
,
47
(
3
), pp.
555
570
.
26.
Abdelwahed
,
M.
, and
Hassine
,
M.
,
2014
, “
Topology Optimization of Time Dependent Viscous Incompressible Flows
,”
Abstr. Appl. Anal.
,
2014
(
9
), p.
923016
.
27.
Duan
,
X.-B.
,
Li
,
F.-F.
, and
Qin
,
X.-Q.
,
2015
, “
Adaptive Mesh Method for Topology Optimization of Fluid Flow
,”
Appl. Math. Lett.
,
44
, pp.
40
44
.
28.
Jensen
,
K. E.
,
Szabo
,
P.
, and
Okkels
,
F.
,
2012
, “
Topology Optimization of Viscoelastic Rectifiers
,”
Appl. Phys. Lett.
,
100
(
23
), p.
234102
.
29.
Coffin
,
P.
, and
Maute
,
K.
,
2016
, “
A Level-Set Method for Steady-State and Transient Natural Convection Problems
,”
Struct. Multidiscipl. Optim.
,
53
(
5
), pp.
1047
1067
.
30.
Coffin
,
P.
, and
Maute
,
K.
,
2016
, “
Level Set Topology Optimization of Cooling and Heating Devices Using a Simplified Convection Model
,”
Struct. Multidiscipl. Optim.
,
53
(
5
), pp.
985
1003
.
31.
Zhou
,
M.
,
Alexandersen
,
J.
,
Sigmund
,
O.
, and
Pedersen
,
C. B. W.
,
2016
, “
Industrial Application of Topology Optimization for Combined Conductive and Convective Heat Transfer Problems
,”
Struct. Multidiscipl. Optim.
,
54
(
4
), pp.
1045
1060
.
32.
Pietropaoli
,
M.
,
Montomoli
,
F.
, and
Gaymann
,
A.
,
2019
, “
Three-Dimensional Fluid Topology Optimization for Heat Transfer
,”
Struct. Multidiscipl. Optim.
,
59
(
3
), pp.
801
812
.
33.
Wu
,
S. H.
,
Zhang
,
Y. C.
, and
Liu
,
S. T.
,
2019
, “
Topology Optimization for Minimizing the Maximum Temperature of Transient Heat Conduction Structure
,”
Struct. Multidiscipl. Optim.
,
60
(
1
), pp.
69
82
.
34.
Qian
,
S. H.
,
Lou
,
S. X.
,
Ge
,
C. L.
,
Wang
,
W.
,
Tian
,
X. W.
, and
Cai
,
Y. Z.
,
2022
, “
The Influence of Temperature Dependent Fluid Properties on Topology Optimization of Conjugate Heat Transfer
,”
Int. J. Therm. Sci.
,
173
, p.
107424
.
35.
Sun
,
S. C.
,
Liebersbach
,
P.
, and
Qian
,
X. P.
,
2020
, “
3d Topology Optimization of Heat Sinks for Liquid Cooling
,”
Appl. Therm. Eng.
,
178
, p.
115540
.
36.
Lee
,
J. S.
,
Yoon
,
S. Y.
,
Kim
,
B.
,
Lee
,
H.
,
Ha
,
M. Y.
, and
Min
,
J. K.
,
2021
, “
A Topology Optimization Based Design of a Liquid-Cooled Heat Sink With Cylindrical Pin Fins Having Varying Pitch
,”
Int. J. Heat Mass Transfer
,
172
, p.
121172
.
37.
Hauke
,
G.
, and
García-Olivares
,
A.
,
2001
, “
Variational Subgrid Scale Formulations for the Advection-Diffusion-Reaction Equation
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
51–52
), pp.
6847
6865
.
38.
Svanber
,
K.
,
2002
, “
A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations
,”
SIAM J. Optim.
,
12
(
2
), pp.
555
573
.
39.
Olesen
,
L. H.
,
Okkels
,
F.
, and
Bruus
,
H.
,
2006
, “
A High-Level Programming-Language Implementation of Topology Optimization Applied to Steady-State Navier–Stokes Flow
,”
Int. J. Numer. Methods Eng.
,
65
(
7
), pp.
975
1001
.
You do not currently have access to this content.