Abstract

An experimental and numerical study of the convective heat transfer enhancement provided by two rib families (W and Broken W) is presented, covering Reynolds numbers (Re) between 300,000 and 900,000 in a straight channel with a rectangular cross section (AR = 1.29). These high Reynolds numbers were selected for the current study since most data in the available literature typically pertain to investigations at lower Reynolds numbers. The objective of this study is to assess the local heat transfer coefficient (HTC) enhancement (compared with a smooth channel) and the overall thermal performance, taking into account the effect of increased roughness on the friction factor, of a group of W-shaped turbulators over a wide range of Reynolds numbers. Furthermore, the effects of increasing the rib spacing on the thermal performance of the Broken W configuration are presented and discussed. The numerical results are compared against heat transfer measurements obtained using the transient liquid crystal (TLC) method. The research shows that for the Broken W turbulators, increasing the Reynolds number is associated with an overall decrease of the thermal performance while the thermal performance of the W configuration is relatively insensitive to Reynolds number. Nevertheless, the Broken W configuration delivers higher thermal performance and heat transfer compared with the W configuration for the range of Re investigated. The Broken W configuration with a pitch spacing of 10 times the rib height was shown to provide the optimal thermal performance in the configurations investigated here.

References

1.
Hagari
,
T.
,
Ishida
,
K.
,
Oda
,
T.
,
Douura
,
Y.
, and
Kinoshita
,
Y.
,
2011
, “
Heat Transfer and Pressure Losses of W-Shaped Small Ribs at High Reynolds Numbers for Combustor Liner
,”
ASME J. Eng. Gas Turbines Power
,
133
(
9
), p.
091901
.
2.
Kunstmann
,
S.
,
von Wolfersdorf
,
J.
, and
Ruedel
,
U.
,
2010
, “
Heat Transfer and Pressure Drop in Combustor Cooling Channels With Combinations of Geometrical Elements
,” ASME Paper No. GT2010–23234.
3.
Li
,
Y.
,
Rao
,
Y.
,
Wang
,
D.
,
Zhang
,
P.
, and
Wu
,
X.
,
2019
, “
Heat Transfer and Pressure Loss of Turbulent Flow in Channels With Miniature Structured Ribs on One Wall
,”
Int. J. Heat Mass Transfer
,
131
, pp.
584
593
.
4.
Maurer
,
M.
,
von Wolfersdorf
,
J.
, and
Gritsch
,
M.
,
2007
, “
An Experimental and Numerical Study of Heat Transfer and Pressure Losses of V- and W-Shaped Ribs at High Reynolds Numbers
,” ASME Paper No. GT2007–27167.
5.
Zhang
,
M.
,
Singh
,
P.
, and
Ekkad
,
S. V.
,
2019
, “
Rib Turbulator Heat Transfer Enhancements at Very High Reynolds Numbers
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
6
), p.
061014
.
6.
Maurer
,
M.
,
Ruedel
,
U.
,
Gritsch
,
M.
, and
von Wolfersdorf
,
J.
,
2008
, “
Experimental Study of Advanced Convective Cooling Techniques for Combustor Liners
,” ASME Paper No. GT2008–51026.
7.
Mhetras
,
S.
,
Han
,
J. C.
, and
Huth
,
M.
,
2014
, “
Heat Transfer and Pressure Loss Measurements in a Turbulated High Aspect Ratio Channel With Large Reynolds Number Flows
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
4
), p.
041001
.
8.
Rallabandi
,
A. P.
,
Yang
,
H.
, and
Han
,
J. C.
,
2009
, “
Heat Transfer and Pressure Drop Correlations for Square Channels With 45 Deg Ribs at High Reynolds Numbers
,”
ASME J. Heat Transfer-Trans. ASME
,,
131
(
7
), p.
071703
.
9.
Hans
,
V. S.
,
Saini
,
R. P.
, and
Saini
,
J. S.
,
2010
, “
Heat Transfer and Friction Factor Correlations for a Solar Air Heater Duct Roughened Artificially With Multiple V-Ribs
,”
Sol. Energy
,
84
(
6
), pp.
898
911
.
10.
Ieronymidis
,
I.
,
Gillespie
,
D. R. H.
,
Ireland
,
P. T.
, and
Kingston
,
R.
,
2006
, “The Use of High Blockage Ribs to Enhance Heat Transfer Coefficient Distributions in a Model of an Integrally Cast Cooling Manifold,” ASME Paper No. GT2006–91237.
11.
Chiang
,
K. F.
,
Chang
,
S. W.
, and
Chen
,
P. H.
,
2005
, “
Forced Convective Heat Transfer of 45 deg Rib-Roughened Fin Flows
,”
Exp. Therm. Fluid. Sci.
,
29
(
6
), pp.
743
754
.
12.
Tanda
,
G.
,
2004
, “
Heat Transfer in Rectangular Channels With Transverse and V-Shaped Broken Ribs
,”
Int. J. Heat Mass Transfer
,
47
(
2
), pp.
229
243
.
13.
Gupta
,
A.
,
SriHarsha
,
V.
,
Prabhu
,
S. V.
, and
Vedula
,
R. P.
,
2008
, “
Local Heat Transfer Distribution in a Square Channel With 90֯ Continuous, 90֯ Saw Tooth Profiled and 60֯ Broken Ribs
,”
Exp. Therm. Fluid. Sci.
,
32
(
4
), pp.
997
1010
.
14.
Han
,
J. C.
,
Ou
,
S.
,
Park
,
J. S.
, and
Lei
,
C. K.
,
1989
, “
Augmented Heat Transfer in Rectangular Channels of Narrow Aspect Ratios With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
32
(
9
), pp.
1619
1630
.
15.
Kiml
,
R.
,
Mochizuki
,
S.
, and
Murata
,
A.
,
2001
, “
Effects of Rib Arrangements on Heat Transfer and Flow Behavior in a Rectangular Rib-Roughened Passage: Application to Cooling of Gas Turbine Blade Trailing Edge
,”
ASME J. Heat Transfer-Trans. ASME
,
123
(
4
), pp.
675
681
.
16.
Han
,
J. C.
, and
Wright
,
L. M.
,
2006
, “Enhanced Internal Cooling of Turbine Blades and Vanes,”
The Gas Turbine Handbook
,
U.S Department of Energy-National Energy Technology Laboratory (NETL)
,
Morgantown, WV
, pp.
321
354
.
17.
Han
,
J. C.
,
Zhang
,
Y. M.
, and
Lee
,
C. P.
,
1991
, “
Augmented Heat Transfer in Square Channels With Parallel, Crossed, and V-Shaped Angled Ribs
,”
ASME J. Heat Transfer-Trans. ASME
,
113
(
3
), pp.
590
596
.
18.
Han
,
J. C.
, and
Park
,
J. S.
,
1988
, “
Developing Heat Transfer in Rectangular Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
31
(
1
), pp.
183
195
.
19.
Park
,
J. S.
,
Han
,
J. C.
,
Huang
,
Y.
,
Ou
,
S.
, and
Boyle
,
R. J.
,
1992
, “
Heat Transfer Performance Comparisons of Five Different Rectangular Channels With Parallel Angled Ribs
,”
Int. J. Heat Mass Transfer
,
35
(
11
), pp.
2891
2903
.
20.
Wright
,
L. M.
,
Fu
,
W. L.
, and
Han
,
J. C.
,
2004
, “
Thermal Performance of Angled, V-Shaped, and W-Shaped Rib Turbulators in Rotating Rectangular Cooling Channels (AR = 4:1)
,”
ASME J. Turbomach.
,
126
(
4
), pp.
604
614
.
21.
Han
,
J. C.
, and
Zhang
,
Y. M.
,
1992
, “
High Performance Heat Transfer Ducts with Parallel Broken and V-Shaped Broken Ribs
,”
Int. J. Heat Mass Transfer
,
35
(
2
), pp.
513
523
.
22.
Chaube
,
A.
,
Sahoo
,
P. K.
, and
Solanki
,
S. C.
,
2006
, “
Analysis of Heat Transfer Augmentation and Flow Characteristics Due to Rib Roughness Over Absorber Plate of a Solar Air Heater
,”
Renew. Energy
,
31
(
3
), pp.
317
331
.
23.
Lörstad
,
D.
,
2011
, “
LES and RANS Assessment of Rib Cooled Channel Related to SGT-800 Combustor Liner
,” ASME Paper No. GT2011–46415.
24.
Tang
,
X. Y.
, and
Zhu
,
D. S.
,
2013
, “
Flow Structure and Heat Transfer in a Narrow Rectangular Channel With Different Discrete Rib Arrays
,”
Chem. Eng. Process.
,
69
, pp.
1
14
.
25.
Abe
,
K.
,
Kondoh
,
T.
, and
Nagano
,
Y.
,
1994
, “
A New Turbulence Model for Predicting Fluid Flow and Heat Transfer in Separating and Reattaching Flows—I. Flow Field Calculations
,”
Int. J. Heat Mass Transfer
,
37
(
1
), pp.
139
151
.
26.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: the Finite Volume Method
, 2nd ed.,
Pearson Education Ltd
,
London, UK
,
91
92
.
27.
Menter
,
F. R.
,
1993
, “
Zonal Two Equation κ-ω Turbulence Models for Aerodynamic Flows
,” AIAA Paper No. 93–2906.
28.
Ireland
,
P. T.
,
Neely
,
A. J.
,
Gillespie
,
D. R. H.
, and
Robertson
,
A. J.
,
1999
, “
Turbulent Heat Transfer Measurements Using Liquid Crystals
,”
Int. J. Heat Fluid Flow
,
20
(
4
), pp.
355
367
.
29.
den Ouden
,
C.
,
and Hoogendoorn
,
C. J.
,
1974
, “
Local Convective Heat Transfer Coefficients for Jets Impinging on a Plate; Experiments Using a Liquid Crystal Technique
,”
Proceedings of the 5th International Heat Transfer Conference
,
New York
, Vol. V, pp.
293
297
.
30.
Ireland
,
P. T.
, and
Jones
,
T. V.
,
2000
, “
Liquid Crystal Measurements of Heat Transfer and Surface Shear Stress
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
969
986
.
31.
McGilvray
,
M.
, and
Gillespie
,
D.
,
2011
,
Transient Heat Transfer Analysis Code for Liquid Crystal Experiments at the University of Oxford: Updated GUI Driven Software
,
University of Oxford
,
Oxford, UK
.
32.
Tsang
,
C. L. P.
,
2002
, “
High Blockage Turbulators in Gas Turbine Cooling Passages
,”
Ph.D dissertation
,
University of Oxford
,
Oxford, UK
.
33.
Clifford
,
R. J.
,
Jones
,
T. V.
, and
Dunne
,
S. T.
,
1983
, “
Techniques for Obtaining Detailed Heat Transfer Coefficient Measurements Within Gas Turbine Blade and Vane Cooling Passages
,” ASME Paper No. 83-GT-58.
34.
Forsyth
,
P.
,
McGilvray
,
M.
, and
Gillespie
,
D. R. H.
,
2017
, “
Secondary Flow and Heat Transfer Coefficient Distributions in the Developing Flow Region of Ribbed Turbine Blade Cooling Passages
,”
Exp. Fluids
,
58
(
1
), pp.
1
15
.
35.
McGilvray
,
M.
,
Pineiro
,
C. O.
,
Axe
,
T.
,
Ryley
,
J.
, and
Gillespie
,
D. R. H.
,
2013
, “
Comparison of Stationary Internal Cooling Passage Numerical Simulations to Experimental Data
,”
Proceedings of the 10th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
,
Lappeenranta, Finland
, pp.
1
10
.
36.
Ryley
,
J. R.
,
McGilvray
,
M.
, and
Gillespie
,
D.
,
2019
, “
Local Heat Transfer Coefficient Measurements on an Engine-Representative Internal Cooling Passage
,”
J. Thermophys. Heat Transfer
,
33
(
1
), pp.
189
198
.
37.
Byerley
,
A. R.
,
1989
, “
Heat Transfer Near the Entrance to a Film Cooling Hole in a Gas Turbine Blade
,”
Ph.D. dissertation
,
University of Oxford
,
Oxford, UK
.
38.
Moffat
,
R. J.
,
1982
, “
Contributions to the Theory of Single-Sample Uncertainty Analysis
,”
ASME J. Fluid Eng.
,
104
(
2
), pp.
250
258
.
39.
Çengel
,
Y. A.
,
2007
,
Heat and Mass Transfer : A Practical Approach
, 3rd ed.,
McGraw-Hill
,
New York
, pp.
220
221
.
40.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 7th ed.,
Wiley
,
Hoboken, NJ
, p.
284
.
41.
Fan
,
J. F.
,
Ding
,
W. K.
,
Zhang
,
J. F.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2009
, “
A Performance Evaluation Plot of Enhanced Heat Transfer Techniques Oriented for Energy-Saving
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
33
44
.
42.
Fiebig
,
M.
,
1995
, “
Embedded Vortices in Internal Flow: Heat Transfer and Pressure Loss Enhancement
,”
Int. J. Heat Fluid Flow
,
16
(
5
), pp.
376
388
.
43.
Fiebig
,
M.
,
1998
, “
Vortices, Generators and Heat Transfer
,”
Chem. Eng. Res. Des.
,
76
(
A2
), pp.
108
123
.
You do not currently have access to this content.