Abstract

Whenever any engineering system comprising of an internally heated channel/tube is exposed to a severe thermal load, the sagging or deflection measurement becomes an inevitable task from its safety/design analysis perspective. As an example, in a horizontal-type nuclear reactor safety study, it is required to measure the sagging of the channels during a postulated accidental scenario analysis. Unfortunately, measurement of the transient deflection/sagging of the channel under a harsh environment at extreme temperatures is a challenging task, and cannot be performed by the means of conventional intrusive approaches. This study proposes a non-contact digital imaging method with a laser generator and bandwidth filter, which is tested to measure the continuous channel sagging in a uniquely designed test rig. A scaled-down channel setup simulating the horizontal type nuclear reactor is used during the implementation of the present approach for sagging analysis at elevated temperatures. A digital edge detection tool with the Canny method is used to extract digital edges from recorded grayscale images, wherein successive images are used to measure transient sagging. The results are compared with post-test channel deflection measurements, and the difference in measurement is found to be within ±10 percent of post-test deflection.

References

1.
Dutt
,
N.
,
Singh
,
A. R.
, and
Sahoo
,
P. K.
,
2020
, “
CFD Analysis of Suspended Debris During Postulated Severe Core Damage Accident of PHWR
,”
Nucl. Eng. Des.
,
357
(
1
), p.
110390
.
2.
Gupta
,
S. K.
,
Dutt
,
B. K.
,
Raj
,
V. V.
, and
Kakokar
,
A.
,
1996
, “
A Study of The Indian PHWR Reactor Channel Under Prolonged Deteriorated Flow Conditions
,”
IAEA TCM on Advances in Heavy Water Reactors
,
Bhabha Atomic Research Centre, India
.
3.
IAEA
,
2008
,
Analysis of Severe Accidents in Pressurized Heavy Water Reactors
, IAEA-TECDOC-1594,
International Atomic Energy Agency
,
Vienna, Austria
.
4.
Luxat
,
J. C.
,
2009
, “
Thermal-Hydraulic Aspects of Progression to Severe Accidents in CANDU Reactors
,”
Nucl. Technol.
,
167
(
1
), pp.
187
210
.
5.
Majumdar
,
P.
,
Mukhopadhyay
,
D.
,
Gupta
,
S. K.
,
Kushwaha
,
H.
, and
Raj
,
V. V.
,
2004
, “
Simulation of Pressure Tube Deformation During High Temperature Transients
,”
Int. J. Pressure Vessels Piping
,
81
(
7
), pp.
575
581
.
6.
Mukhopadhyay
,
D.
,
Vijayan
,
P. K.
,
Ghosh
,
A. K.
, and
Sahoo
,
P. K.
,
2014
, “
Experimental Study of PHWR Debris Bed Under Boil-Off Condition
,”
Kerntechnik
,
79
(
1
), pp.
34
43
.
7.
Mathew
,
P. M.
,
Kupferschmidt
,
W. C. H.
,
Snell
,
V. G.
, and
Bonechi
,
M.
,
2001
, “
CANDU-Specific Severe Core Damage Accident Experiments in Support of Level 2 PSA
,”
Transactions SMiRT 16
,
Washington DC
.
8.
Nandan
,
G.
,
Sahoo
,
P. K.
,
Kumar
,
R.
,
Chatterjee
,
B.
,
Mukhopadhyay
,
D.
, and
Lele
,
H. G.
,
2010
, “
Experimental Investigation of Sagging of a Completely Voided Pressure Tube of Indian PHWR Under Heatup Condition
,”
Nucl. Eng. Des.
,
240
(
10
), pp.
3504
3512
.
9.
Singh
,
A. R.
,
Tariq
,
A.
, and
Majumdar
,
P.
,
2020
, “
Experimental Study on Thermo-mechanical Deformation of PHWR Channel at Elevated Temperature
,”
Nucl. Eng. Des.
,
364
(
1
), p.
110634
.
10.
Vijayan
,
P. K.
,
Pilkhwal
,
D. S.
,
Saha
,
D.
, and
Venkat Raj
,
V.
,
1999
, “
Experimental Studies on the Pressure Drop Across the Various Components of a PHWR Fuel Channel
,”
Exp. Therm. Fluid Sci.
,
20
(
1
), pp.
34
44
.
11.
Singh
,
A. R.
,
Tariq
,
A.
,
Sahoo
,
P. K.
,
Majumdar
,
P.
, and
Mukhopadhyay
,
D.
,
2021
, “
Longitudinal Deformation Study of Pressure Tube of Indian PHWR Under High Temperature Transient
,”
Ann. Nucl. Energy
,
155
(
1
), p.
108160
.
12.
Herranz
,
L. E.
, and
Velasco
,
F. J. S.
,
2013
, “
Characterization of a Gas Elliptic Jet in a Nuclear Safety Scenario
,”
Exp. Therm. Fluid Sci.
,
44
(
1
), pp.
374
384
.
13.
Bopche
,
S. B.
, and
Sridharan
,
A.
,
2010
, “
Experimental Investigations on Decay Heat Removal in Advanced Nuclear Reactors Using Single Heater Rod Test Facility: Air Alone in the Annular Gap
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1456
1474
.
14.
Mathew
,
P. M.
,
White
,
A. J.
,
Snell
,
V. G.
, and
Bonechi
,
M.
,
2003
, “
Severe Core Damage Experiments and Analysis for CANDU Applications
,”
Transactions SMiRT 17
,
Prague, Czech Republic
.
15.
Canny
,
J.
,
1986
, “
A Computational Approach to Edge Detection
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
8
(
6
), p.
20
.
16.
Qu
,
Z.
,
Fang
,
X.
,
Su
,
H.
, and
Feng
,
X.
,
2015
, “
Measurements for Displacement and Deformation at High Temperature by Using Edge Detection of Digital Image
,”
Appl. Opt.
,
54
(
29
), p.
8731
.
17.
Singh
,
A. R.
,
Sahoo
,
P. K.
, and
Tariq
,
A.
,
2018
, “
Investigation of the Channel Disassembly Behaviour of Indian 200MWe PHWR—A Numerical Approach
,”
Nucl. Eng. Des.
,
339
(
1
), pp.
137
149
.
18.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons Inc.
,
Hoboken, NJ
.
19.
MidOpt—Midwest Optical Systems Inc.
,
2021
, “
Technical Datasheet Bi405: Violet Interference Bandpass Filter
,” MidOpt, http://midopt.com/wp-content/uploads/specs/filters//Bi405_Transmission_MidOpt.pdf
20.
Imperx Inc.
,
2021
, “
Technical Datasheet IMPERX B1923: 1.0” Optical Format CCD Camera
,”
Imperx
, https://www.imperx.com/download/318/b1923/18962/bobcat_b1923.pdf
21.
Navitar Inc.
,
2021
, “
Technical Datasheet NMV 12M1: 1” 12.5mm F1.4 Manual Iris C-Mount Lens, 2 Megapixel
,”
RMA Electron. Inc.
, https://www.rmaelectronics.com/content/navitar/outline-drawing_nmv-12m1.pdf
22.
Gonzalez
,
R. C.
,
Woods
,
R. E.
, and
Eddins
,
S. L.
,
2009
,
Digital Image Processing Using MATLAB
,
Gatesmark LLC.
,
Knoxville, TN
.
23.
Jähne
,
B.
,
2002
,
Digital Image Processing
,
Springer
,
Berlin
.
24.
MATLAB
,
2014
,
Version 8.4.0.150421 (R2014b)
,
The MathWorks Inc.
,
Natick, MA
.
You do not currently have access to this content.