Abstract

A thermodynamic model is developed for a forward osmosis (FO) absorption heat pump capable of purifying graywater and providing year-round space conditioning with low-temperature heat as the primary energy input. The model is applied to 16 potential absorbents, and six are selected for parametric studies on desorber temperature, absorber temperature, condenser temperature, and heat sink temperature to determine the effects on the energy ratio (defined as the ratio of total useful output to total power input) of the cycle and the required graywater flowrate. Experiments are conducted to test the water flux and reverse solute flux in FO for the most promising absorbents. Of the six selected absorbents, four to two salt-organic mixtures and two pure salts appear to have the most promising thermodynamic behavior, while an ionic liquid demonstrates the best FO behavior.

References

1.
Rijsberman
,
F. R.
,
2006
, “
Water Scarcity: Fact or Fiction?
,”
Agric. Water Manage.
,
80
(
1–3
), pp.
5
22
.
2.
Achilli
,
A.
,
Cath
,
T. Y.
,
Marchand
,
E. A.
, and
Childress
,
A. E.
,
2009
, “
The Forward Osmosis Membrane Bioreactor: A Low Fouling Alternative to MBR Processes
,”
Desalination
,
239
(
1–3
), pp.
10
21
.
3.
Ghaffour
,
N.
,
Missimer
,
T. M.
, and
Amy
,
G. L.
,
2013
, “
Technical Review and Evaluation of the Economics of Water Desalination: Current and Future Challenges for Better Water Supply Sustainability
,”
Desalination
,
309
, pp.
197
207
.
4.
Ghalavand
,
Y.
,
Hatamipour
,
M. S.
, and
Rahimi
,
A.
,
2015
, “
A Review on Energy Consumption of Desalination Processes
,”
Desalin. Water Treat.
,
54
(
6
), pp.
1
16
.
5.
Cath
,
T. Y.
,
Childress
,
A. E.
, and
Elimelech
,
M.
,
2006
, “
Forward Osmosis: Principles, Applications, and Recent Developments
,”
J. Membr. Sci.
,
281
(
1–2
), pp.
70
87
.
6.
McGovern
,
R. K.
, and
Lienhard V
,
J. H.
,
2014
, “
On the Potential of Forward Osmosis to Energetically Outperform Reverse Osmosis Desalination
,”
J. Membr. Sci.
,
469
, pp.
245
250
.
7.
Han
,
G.
,
Zuo
,
J.
,
Wan
,
C.
, and
Chung
,
T.-S.
,
2015
, “
Hybrid Pressure Retarded Osmosis–Membrane Distillation (PRO–MD) Process for Osmotic Power and Clean Water Generation
,”
Environ. Sci.: Water Res. Technol.
,
1
(
4
), pp.
507
515
.
8.
Norman
,
R. S.
,
1974
, “
Water Salination: A Source of Energy
,”
Science
,
186
(
4161
), pp.
350
352
.
9.
Han
,
G.
,
Ge
,
Q.
, and
Chung
,
T.-S.
,
2014
, “
Conceptual Demonstration of Novel Closed-Loop Pressure Retarded Osmosis Process for Sustainable Osmotic Energy Generation
,”
Appl. Energy
,
132
, pp.
383
393
.
10.
Lee
,
J.-G.
,
Kim
,
Y.-D.
,
Shim
,
S.-M.
,
Im
,
B.-G.
, and
Kim
,
W.-S.
,
2015
, “
Numerical Study of a Hybrid Multi-Stage Vacuum Membrane Distillation and Pressure-Retarded Osmosis System
,”
Desalination
,
363
, pp.
82
91
.
11.
Achilli
,
A.
,
Cath
,
T. Y.
, and
Childress
,
A. E.
,
2010
, “
Selection of Inorganic-Based Draw Solutions for Forward Osmosis Applications
,”
J. Membr. Sci.
,
364
(
1–2
), pp.
233
241
.
12.
Hickenbottom
,
K. L.
,
Vanneste
,
J.
, and
Cath
,
T. Y.
,
2016
, “
Assessment of Alternative Draw Solutions for Optimized Performance of a Closed-Loop Osmotic Heat Engine
,”
J. Membr. Sci.
,
504
, pp.
162
175
.
13.
Luo
,
W.
,
Hai
,
F. I.
,
Price
,
W. E.
,
Elimelech
,
M.
, and
Nghiem
,
L. D.
,
2016
, “
Evaluating Ionic Organic Draw Solutes in Osmotic Membrane Bioreactors for Water Reuse
,”
J. Membr. Sci.
,
514
, pp.
636
645
.
14.
Bowden
,
K. S.
,
Achilli
,
A.
, and
Childress
,
A. E.
,
2012
, “
Organic Ionic Salt Draw Solutions for Osmotic Membrane Bioreactors
,”
Bioresour. Technol.
,
122
, pp.
207
216
.
15.
Kim
,
Y. J.
,
Kim
,
S.
,
Joshi
,
Y. K.
,
Fedorov
,
A. G.
, and
Kohl
,
P. A.
,
2012
, “
Thermodynamic Analysis of an Absorption Refrigeration System With Ionic-Liquid/Refrigerant Mixture as a Working Fluid
,”
Energy
,
44
(
1
), pp.
1005
1016
.
16.
Boman
,
D. B.
,
Hoysall
,
D. C.
,
Staedter
,
M. A.
,
Goyal
,
A.
,
Ponkala
,
M. J.
, and
Garimella
,
S.
,
2017
, “
A Method for Comparison of Absorption Heat Pump Working Pairs
,”
Int. J. Refrig.
,
77
, pp.
149
175
.
17.
Saravanan
,
R.
, and
Maiya
,
M. P.
,
1998
, “
Thermodynamic Comparison of Water-Based Working Fluid Combinations for a Vapour Absorption Refrigeration System
,”
Appl. Therm. Eng.
,
18
(
7
), pp.
553
568
.
18.
Yokozeki
,
A.
, and
Shiflett
,
M. B.
,
2010
, “
Water Solubility in Ionic Liquids and Application to Absorption Cycles
,”
Ind. Eng. Chem. Res.
,
49
(
19
), pp.
9496
9503
.
19.
Boman
,
D. B.
, and
Garimella
,
S.
,
2020
, “
Absorption Heat Pump Cycles for Simultaneous Space Conditioning and Graywater Purification
,”
Appl. Therm. Eng.
,
167
, p.
114587
.
20.
DeOreo
,
W. B.
,
Mayer
,
P.
,
Dziegielewski
,
B.
, and
Kiefer
,
J.
,
2016
, “
Residential End Uses of Water, Version 2: Executive Report
,”
Water Research Foundation
,
Denver, CO
, Report No. 4309A.
21.
AHRI
,
2017
,
2017 Standard for Performance Rating of Unitary Air-conditioning and Air-Source Heat Pump Equipment
,
Air-Conditioning, Heating, and Refrigeration Institute
,
Arlington, VA
.
22.
Dong
,
L.
,
Zheng
,
D.
,
Nie
,
N.
, and
Li
,
Y.
,
2012
, “
Performance Prediction of Absorption Refrigeration Cycle Based on the Measurements of Vapor Pressure and Heat Capacity of H2O + [DMIM]DMP System
,”
Appl. Energy
,
98
, pp.
326
332
.
23.
Klein
,
S. A.
,
2015
, “EES—Engineering Equation Solver,” F-Chart Software, Middleton, WI.
24.
Gray
,
G. T.
,
McCutcheon
,
J. R.
, and
Elimelech
,
M.
,
2006
, “
Internal Concentration Polarization in Forward Osmosis: Role of Membrane Orientation
,”
Desalination
,
197
(
1
), pp.
1
8
.
25.
Sereno
,
A. M.
,
Hubinger
,
M. D.
,
Comesaña
,
J. F.
, and
Correa
,
A.
,
2001
, “
Prediction of Water Activity of Osmotic Solutions
,”
J. Food Eng.
,
49
(
2
), pp.
103
114
.
26.
Choosri
,
T.
,
Koglbauer
,
G.
, and
Wendland
,
M.
,
2009
, “
A New Method for the Measurement of the Water Activity or Relative Humidity by Fourier Transform Infrared Spectroscopy
,”
J. Chem. Eng. Data
,
54
(
4
), pp.
1179
1182
.
27.
Taylor
,
B. N.
, and
Kuyatt
,
C. E.
,
1994
,
NIST Technical Note 1297: Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results
,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
28.
Rong
,
K.
,
Zhang
,
T. C.
, and
Li
,
T.
,
2017
, “
Forward Osmosis: Definition and Evaluation of FO Water Transmission Coefficient
,”
J. Water Process. Eng.
,
20
, pp.
106
112
.
29.
Collins
,
W. D.
,
1925
, “
Temperature of Water Available for Industrial Use in the United States: Chapter F in Contributions to the Hydrology of the United States, 1923–1924
,” Report No. 520F,
Washington, D.C
.
30.
Zhao
,
S.
,
Zou
,
L.
,
Tang
,
C. Y.
, and
Mulcahy
,
D.
,
2012
, “
Recent Developments in Forward Osmosis: Opportunities and Challenges
,”
J. Membr. Sci.
,
396
, pp.
1
21
.
31.
Phillip
,
W. A.
,
Yong
,
J. S.
, and
Elimelech
,
M.
,
2010
, “
Reverse Draw Solute Permeation in Forward Osmosis: Modeling and Experiments
,”
Environ. Sci. Technol.
,
44
(
13
), pp.
5170
5176
.
32.
Yong
,
J. S.
,
Phillip
,
W. A.
, and
Elimelech
,
M.
,
2012
, “
Coupled Reverse Draw Solute Permeation and Water Flux in Forward Osmosis With Neutral Draw Solutes
,”
J. Membr. Sci.
,
392–393
, pp.
9
17
.
33.
Suh
,
C.
, and
Lee
,
S.
,
2013
, “
Modeling Reverse Draw Solute Flux in Forward Osmosis With External Concentration Polarization in Both Sides of the Draw and Feed Solution
,”
J. Membr. Sci.
,
427
, pp.
365
374
.
You do not currently have access to this content.