Abstract

Achieving accurate experimental data in conjugate heat transfer studies to calculate Nusselt number can be challenging due to its complex three-dimensional thermal hydraulics nature. This study is devoted to evaluating the accuracy and reliability of experimental approaches used to calculate the Nusselt number in miniature heat sinks. It is observed that three major parameters including (1) axial heat conduction within the solid substrate of heat sinks, (2) thermal contact resistance, and (3) assumed uniform wall temperature, as well as wall heat flux distributions, influence the reported experimental data in the literature. The results obtained from the developed analytical and computational models in this study revealed that the assumptions of local uniform wall temperature and heat flux distributions for small-scale heat sinks result in underestimated Nusselt numbers calculated from experiments. At lower Reynolds number (<200) flows in miniature heat sinks with a high solid to fluid thermal conductivity ratio (>> 1), it is shown that the fluid bulk temperature should be measured away from the heat sink inlet and outlet to minimize the effect of axial heat conduction within the solid substrate of the microscale heat sinks on calculated Nusselt numbers. As the third important parameter, the influence of thermal contact resistance on the Nusselt number calculation in a miniature heat sink is studied where thermal slip length is considered. Finally, the concurrent effects of thermal contact resistance and thermal developing region are considered to explicate the obtained trends in the experimental Nusselt numbers dataset.

References

1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
2.
Qu
,
W.
, and
Mudawar
,
I.
,
2002
, “
Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat Sink
,”
Int. J. Heat Mass Transfer
,
45
(
12
), pp.
2549
2565
.
3.
Garimella
,
S. V.
, and
Singhal
,
V.
,
2004
, “
Single-Phase Flow and Heat Transport and Pumping Considerations in Microchannel Heat Sinks
,”
Heat Transfer Eng.
,
25
(
1
), pp.
15
25
.
4.
Rostami
,
A. A.
,
Mujumdar
,
A. S.
, and
Saniei
,
N.
,
2002
, “
Flow and Heat Transfer for Gas Flowing in Microchannels: A Review
,”
Heat Mass Transfer
,
38
(
4
), pp.
359
367
.
5.
Gad-El-Hak
,
M.
,
2005
,
MEMS: Introduction and Fundamentals
,
CRC Press Taylor & Francis
,
New York
.
6.
Ramesh
,
K. N.
,
Sharma
,
T. K.
, and
Rao
,
G. A. P.
,
2021
, “
Latest Advancements in Heat Transfer Enhancement in the Micro-Channel Heat Sinks: A Review
,”
Arch. Comput. Methods Eng.
,
28
(
4
), pp.
3135
3165
.
7.
Zhou
,
J.
,
Cao
,
X.
,
Zhang
,
N.
,
Yuan
,
Y.
,
Zhao
,
X.
, and
Hardy
,
D.
,
2020
, “
Micro-Channel Heat Sink: A Review
,”
J. Therm. Sci.
,
29
(
6
), pp.
1431
1462
.
8.
Judy
,
J.
,
Maynes
,
D.
, and
Webb
,
B. W.
,
2002
, “
Characterization of Frictional Pressure Drop for Liquid Flows Through Microchannels
,”
Int. J. Heat Mass Transfer
,
45
(
17
), pp.
3477
3489
.
9.
Ghani
,
I. A.
,
Sidik
,
N. A. C.
, and
Kamaruzaman
,
N.
,
2017
, “
Hydrothermal Performance of Microchannel Heat Sink: The Effect of Channel Design
,”
Int. J. Heat Mass Transfer
,
107
, pp.
21
44
.
10.
Gong
,
W.
,
Shen
,
J.
,
Dai
,
W.
,
Li
,
K.
, and
Gong
,
M.
,
2021
, “
Research and Applications of Drag Reduction in Thermal Equipment: A Review
,”
Int. J. Heat Mass Transfer
,
172
, p.
121152
.
11.
Schnell
,
E.
,
1956
, “
Slippage of Water Over Nonwettable Surfaces
,”
J. Appl. Phys.
,
27
(
10
), pp.
1149
1152
.
12.
Lumma
,
D.
,
Best
,
A.
,
Gansen
,
A.
,
Feuillebois
,
F.
,
Rädler
,
J. O.
, and
Vinogradova
,
O. I.
,
2003
, “
Flow Profile Near a Wall Measured by Double-Focus Fluorescence Cross-Correlation
,”
Phys. Rev. E.
,
67
(
5
), p.
56313
.
13.
Tretheway
,
D. C.
, and
Meinhart
,
C. D.
,
2002
, “
Apparent Fluid Slip at Hydrophobic Microchannel Walls
,”
Phys. Fluids
,
14
(
3
), pp.
L9
L12
.
14.
Lelea
,
D.
,
Nishio
,
S.
, and
Takano
,
K.
,
2004
, “
The Experimental Research on Microtube Heat Transfer and Fluid Flow of Distilled Water
,”
Int. J. Heat Mass Transfer
,
47
(
12–13
), pp.
2817
2830
.
15.
Pourghasemi
,
M.
,
Fathi
,
N.
, and
Rodriguez
,
S.
,
2021
, “
Numerical Study on Flow and Heat Transfer of Water and Liquid Metals Within Micro-Scale Heat Sinks for High Heat Dissipation Rate Applications
,”
29th International Conference Nuclear Energy For New Europe (NENE)
,
Portoroz, Slovenia
,
Sept. 7–10
, pp. 718.1–718.13. https://arxiv.org/abs/2106.11752
16.
Pourghasemi
,
M.
,
Fathi
,
N.
, and
Razi
,
M.
,
2021
, “
Effect of Wall Hydrophobicity on Heat Transfer and Flow Field Within Miniature Heat Sinks
,”
5-6th Thermal and Fluids Engineering Conference (TFEC-Virtual)
,
May 26–28
, pp.
11
17
.
17.
Alihosseini
,
Y.
,
Zabetian Targhi
,
M.
,
Heyhat
,
M. M.
, and
Ghorbani
,
N.
,
2020
, “
Effect of a Micro Heat Sink Geometric Design on Thermo-Hydraulic Performance: A Review
,”
Appl. Therm. Eng.
,
170
, p.
114974
.
18.
Debbarma
,
D.
,
Pandey
,
K. M.
, and
Paul
,
A.
,
2021
, “
Enhancement of Thermal Performance of Microchannels Using Different Channel Wall Geometries: A Review
,”
Lect. Notes Mech. Eng.
, pp.
881
889
.
19.
Wu
,
H. Y.
, and
Cheng
,
P.
,
2003
, “
An Experimental Study of Convective Heat Transfer in Silicon Microchannels With Different Surface Conditions
,”
Int. J. Heat Mass Transfer
,
46
(
14
), pp.
2547
2556
.
20.
Kim
,
B.
,
2016
, “
An Experimental Study on Fully Developed Laminar Flow and Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Fluid Flow
,
62
, pp.
224
232
.
21.
Hajmohammadi
,
M. R.
, and
Nourazar
,
S. S.
,
2014
, “
Conjugate Forced Convection Heat Transfer From a Heated Flat Plate of Finite Thickness and Temperature-Dependent Thermal Conductivity
,”
Heat Transfer Eng.
,
35
(
9
), pp.
863
874
.
22.
Huang
,
C. Y.
,
Wu
,
C. M.
,
Chen
,
Y. N.
, and
Liou
,
T. M.
,
2014
, “
The Experimental Investigation of Axial Heat Conduction Effect on the Heat Transfer Analysis in Microchannel Flow
,”
Int. J. Heat Mass Transfer
,
70
, pp.
169
173
.
23.
Maranzana
,
G.
,
Perry
,
I.
, and
Maillet
,
D.
,
2004
, “
Mini- and Micro-Channels: Influence of Axial Conduction in the Walls
,”
Int. J. Heat Mass Transfer
,
47
(
17–18
), pp.
3993
4004
.
24.
Tiselj
,
I.
,
Hetsroni
,
G.
,
Mavko
,
B.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Segal
,
Z.
,
2004
, “
Effect of Axial Conduction on the Heat Transfer in Micro-Channels
,”
Int. J. Heat Mass Transfer
,
47
(
12–13
), pp.
2551
2565
.
25.
Nagayama
,
G.
,
Matsumoto
,
T.
,
Fukushima
,
K.
, and
Tsuruta
,
T.
,
2017
, “
Scale Effect of Slip Boundary Condition at Solid-Liquid Interface
,”
Sci. Rep.
,
7
(
1
), pp.
1
8
.
26.
Pourghasemi
,
M.
, and
Fathi
,
N.
,
2021
, “
Asymmetrical Heat Distribution Pattern in Miniature Heat Sinks Due to Conjugate Heat Transfer
,”
Verification and Validation
, Vol.
84782
,
Virtual Online, May 19–20
,
American Society of Mechanical Engineers
, p.
V001T06A003
.
27.
Zhai
,
Y.
,
Xia
,
G.
,
Li
,
Z.
, and
Wang
,
H.
,
2017
, “
Experimental Investigation and Empirical Correlations of Single and Laminar Convective Heat Transfer in Microchannel Heat Sinks
,”
Exp. Therm. Fluid. Sci.
,
83
, pp.
207
214
.
28.
Sui
,
Y.
,
Lee
,
P. S.
, and
Teo
,
C. J.
,
2011
, “
An Experimental Study of Flow Friction and Heat Transfer in Wavy Microchannels with Rectangular Cross Section
,”
Int. J. Therm. Sci.
,
50
(
12
), pp.
2473
2482
.
29.
Esmaili
,
Q.
,
Ranjbar
,
A. A.
, and
Porkhial
,
S.
,
2018
, “
Experimental Analysis of Heat Transfer in Ribbed Microchannel
,”
Int. J. Therm. Sci.
,
130
, pp.
140
147
.
30.
Lee
,
P. S.
,
Garimella
,
S. V.
, and
Liu
,
D.
,
2005
, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1688
1704
.
31.
Kapitza
,
P. L.
,
1941
, “
Heat Transfer and Superfluidity of Helium II
,”
Phys. Rev.
,
60
(
4
), pp.
354
355
.
32.
Morini
,
G. L.
,
2000
, “
Analytical Determination of the Temperature Distribution and Nusselt Numbers in Rectangular Ducts With Constant Axial Heat Flux
,”
Int. J. Heat Mass Transfer
,
43
(
5
), pp.
741
755
.
33.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2015
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons Inc.
,
Hoboken, NJ
.
You do not currently have access to this content.