Abstract

The objective of this experimental investigation was to determine the cooling performance of a fully cooled vane with 18 rows of cylinder cooling holes. The exit Reynolds number in the wind tunnel normalized by the true chord was 500,000 with an inlet turbulence intensity of 15%. The film cooling effectiveness and heat transfer coefficient distribution were obtained by the transient liquid crystal (TLC) technology, three mass flow ratios (MFRs = 7.0%, 9.9%, 11%) and two density ratios (DRs = 1.0, 1.5) were tested. The results show that the film cooling effectiveness distribution on the suction side is more uniform and the coolant injection trajectory is much longer than that on the pressure side. As the density ratio increasing to 1.5, the more laterally uniform film cooling effectiveness contour on the pressure side is observed and the spatially averaged film cooling effectiveness is increased by 11–43%. For the MFR = 7.0%, the coolant injection with low momentum thickens the boundary layer and reduces the heat transfer coefficient in the mid-chord region of the pressure side. Both the increased mass flow ratio and decreased density ratio result in a higher heat transfer coefficient, while do not alter the distribution trend. By calculating the heat flux ratio, the reduction in the heat flux at DR = 1.5 is found to be within 20% in most areas than that of DR = 1.0 on the vane surface.

References

1.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
2.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.
3.
Lutum
,
E.
, and
Johnson
,
B. V.
,
1999
, “
Influence of the Hole Length-to-Diameter Ratio on Film Cooling With Cylindrical Holes
,”
ASME J. Turbomach.
,
121
(
2
), pp.
209
216
.
4.
Eriksen
,
V. L.
, and
Goldstein
,
R. J.
,
1974
, “
Heat Transfer and Film Cooling Following Injection Through Inclined Circular Tubes
,”
ASME J. Heat Transfer
,
96
(
2
), pp.
239
245
.
5.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Heat Transfer Coefficient Measurements of Film-Cooling Holes With Expanded Exits
,” ASME Paper No.98-GT-28.
6.
Ekkad
,
S. V.
,
Zapata
,
D.
, and
Han
,
J.-C.
,
1995
, “
Heat Transfer Coefficients Over a Flat Surface With Air and CO2 Injection Through Compound Angle Holes Using a Transient Liquid Crystal Image Method
,” ASME Paper No.95-GT-10.
7.
Yu
,
Y.
,
Yen
,
C.-H.
,
Shih
,
T. I.-P.
,
Chyu
,
M. K.
, and
Gogineni
,
S.
,
2002
, “
Film Cooling Effectiveness and Heat Transfer Coefficient Distributions Around Diffusion Shaped Holes
,”
ASME J. Heat Transfer
,
124
(
5
), pp.
820
827
.
8.
Han
,
J.-C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2000
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor and Francis
,
New York
.
9.
Pedersen
,
D. R.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1977
, “
Film Cooling With Large Density Differences Between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy
,”
ASME J. Heat Transfer
,
99
(
4
), pp.
620
627
.
10.
Ammari
,
H. D.
,
Hay
,
N.
, and
Lampard
,
D.
,
1990
, “
The Effect of Density Ratio on the Heat Transfer Coefficient From a Film-Cooled Flat Plate
,”
ASME J. Turbomach.
,
112
(
3
), pp.
444
450
.
11.
Vinton
,
K. R.
,
Watson
,
T. B.
,
Wright
,
L. M.
,
Crites
,
D. C.
,
Morris
,
M. C.
, and
Riahi
,
A.
,
2017
, “
Combined Effects of Freestream Pressure Gradient and Density Ratio on the Film Cooling Effectiveness of Round and Shaped Holes on a Flat Plate
,”
ASME J. Turbomach.
,
139
(
4
), p.
041003
.
12.
Ames
,
F. E.
,
1998
, “
Aspects of Vane Film Cooling With High Turbulence: Part I—Heat Transfer
,”
ASME J. Turbomach.
,
120
(
4
), pp.
768
776
.
13.
Bons
,
J. P.
,
MacArthur
,
C. D.
, and
Rivir
,
R. B.
,
1996
, “
The Effect of High Free-Stream Turbulence on Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
118
(
4
), pp.
814
825
.
14.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Free-Stream Effects on the Cooling Performance of Cylindrical and Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), p.
061007
.
15.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2016
, “
Effect of High Freestream Turbulence on Flowfields of Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
138
(
9
), p.
091001
.
16.
Winka
,
J. R.
,
Anderson
,
J. B.
,
Boyd
,
E. J.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
2013
, “
Convex Curvature Effects on Film Cooling Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
136
(
6
), p.
061015
.
17.
Qin
,
Y.
,
Chen
,
P.
,
Ren
,
J.
, and
Jiang
,
H.
,
2016
, “
Effects of Wall Curvature and Streamwise Pressure Gradient on Film Cooling Effectiveness
,”
Appl. Therm. Eng.
,
107
(
8
), pp.
776
784
.
18.
Mehendale
,
A. B.
,
Jiang
,
H. W.
,
Ekkad
,
S. V.
, and
Han
,
J.-C.
,
1998
, “
Effect of Film Injection Location on Local Heat Transfer Coefficient on a Gas Turbine Blade
,”
Int. J. Rotating Machinery
,
4
(
3
), pp.
163
174
.
19.
Li
,
S.
,
Yang
,
S.
, and
Han
,
J.-C.
,
2013
, “
Effect of Coolant Density on Leading Edge Showerhead Film Cooling Using the Pressure Sensitive Paint Measurement Technique
,”
ASME J. Turbomach.
,
136
(
5
), p.
051011
.
20.
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
,
2003
, “
Effects of Coolant Density Ratio on Film Cooling Performance on a Vane
,”
ASME Paper No. GT-2003-38582.
21.
Gao
,
Z.
,
Narzary
,
D. P.
,
Mhetras
,
S.
, and
Han
,
J.-C.
,
2008
, “
Full-Coverage Film Cooling for a Turbine Blade With Axial-Shaped Holes
,”
J. Thermophys. Heat Transfer
,
22
(
1
), pp.
50
61
.
22.
Mhetras
,
S.
,
Han
,
J.-C.
, and
Rudolph
,
R.
,
2011
, “
Effect of Flow Parameter Variations on Full Coverage Film-Cooling Effectiveness for a Gas Turbine Blade
,”
ASME J. Turbomach.
,
134
(
1
), p.
011004
.
23.
Narzary
,
D. P.
,
Liu
,
K.-C.
,
Rallabandi
,
A. P.
, and
Han
,
J.-C.
,
2012
, “
Influence of Coolant Density on Turbine Blade Film-Cooling Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
134
(
3
), p.
031006
.
24.
Dyson
,
T. E.
,
McClintic
,
J. W.
,
Bogard
,
D. G.
, and
Bradshaw
,
S. D.
,
2013
, “
Adiabatic and Overall Effectiveness for a Fully Cooled Turbine Vane
,” ASME Paper No. GT2013-94928.
25.
Fu
,
Z.
,
Zhu
,
H.
,
Cheng
,
L.
, and
Jiang
,
R.
,
2019
, “
Experimental Investigation on the Effect of Mainstream Turbulence on Full Coverage Film Cooling Effectiveness for a Turbine Guide Vane
,”
J. Therm. Sci.
,
28
(
1
), pp.
145
157
.
26.
Ling
,
J. P. C. W.
,
Ireland
,
P. T.
, and
Turner
,
L.
,
2004
, “
A Technique for Processing Transient Heat Transfer, Liquid Crystal Experiments in the Presence of Lateral Conduction
,”
ASME J. Turbomach.
,
126
(
2
), pp.
247
258
.
27.
Ekkad
,
S. V.
, and
Han
,
J.-C.
,
2000
, “
A Transient Liquid Crystal Thermography Technique for Gas Turbine Heat Transfer Measurements
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
957
968
.
28.
Drost
,
U.
,
Bölcs
,
A.
, and
Hoffs
,
A.
,
1997
, “
Utilization of the Transient Liquid Crystal Technique for Film Cooling Effectiveness and Heat Transfer Investigations on a Flat Plate and a Turbine Airfoil
,”
ASME Paper No.97-GT-26
.
29.
Liu
,
C.
,
Zhu
,
H.
,
Zhang
,
Z.
, and
Xu
,
D.
,
2012
, “
Experimental Investigation on the Leading Edge Film Cooling of Cylindrical and Laid-Back Holes With Different Hole Pitches
,”
Int. J. Heat Mass Transfer.
,
55
(
23
), pp.
6832
6845
.
30.
Zhang
,
B.
,
Zhu
,
H.
,
Liu
,
C.
,
Yao
,
C.
, and
Fu
,
Z.
,
2019
, “
Experimental and Numerical Research on Heat Transfer and Flow Characteristics in Two-Turn Ribbed Serpentine Channel With Lateral Outflow
,”
Exp. Therm. Fluid. Sci.
,
104
(
6
), pp.
116
128
.
31.
Xue
,
S.
,
Newman
,
A.
,
Ng
,
W.
,
Moon
,
H. K.
, and
Zhang
,
L.
,
2013
, “
Heat Transfer Performance of a Showerhead and Shaped Hole Film Cooled Vane at Transonic Conditions
,”
ASME J. Turbomach.
,
135
(
3
), p.
031007
.
32.
Nathan
,
M. L.
,
Dyson
,
T. E.
,
Bogard
,
D. G.
, and
Bradshaw
,
S. D.
,
2013
, “
Adiabatic and Overall Effectiveness for the Showerhead Film Cooling of a Turbine Vane
,”
ASME J. Turbomach.
,
136
(
3
), p.
031005
.
33.
Ligrani
,
P.
,
Goodro
,
M.
,
Fox
,
M. D.
, and
Moon
,
H.-K.
,
2015
, “
Full-Coverage Film Cooling: Heat Transfer Coefficients and Film Effectiveness for a Sparse Hole Array at Different Blowing Ratios and Contraction Ratios
,”
ASME J. Heat Transfer
,
137
(
3
), p.
032201
.
34.
Jiang
,
H.
,
Chen
,
W.
,
Zhang
,
Q.
, and
He
,
L.
,
2015
, “
Analytical-Solution Based Corner Correction for Transient Thermal Measurement
,”
ASME J. Heat Transfer
,
137
(
11
), p.
111302
.
35.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid. Sci.
,
1
(
1
), pp.
3
17
.
36.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
,
110
(
4a
), pp.
862
869
.
37.
Arts
,
T.
,
Duboue
,
J.-M.
, and
Rollin
,
G.
,
1998
, “
Aerothermal Performance Measurements and Analysis of a Two-Dimensional High Turning Rotor Blade
,”
ASME J. Turbomach.
,
120
(
3
), pp.
494
499
.
38.
Incropera
,
F. P.
,
Lavine
,
A. S.
,
Bergman
,
T. L.
, and
DeWitt
,
D. P.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
39.
Nasir
,
S.
,
Carullo
,
J. S.
,
Ng
,
W.-F.
,
Thole
,
K. A.
,
Wu
,
H.
,
Zhang
,
L. J.
, and
Moon
,
H. K.
,
2009
, “
Effects of Large Scale High Freestream Turbulence and Exit Reynolds Number on Turbine Vane Heat Transfer in a Transonic Cascade
,”
ASME J. Turbomach.
,
131
(
2
), p.
021021
.
40.
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
1996
, “
Effects of Free-Stream Turbulence and Surface Roughness on Film Cooling
,” ASME Paper No. 96-GT-462.
41.
Thole
,
K.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Flowfield Measurements for Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
2
), pp.
327
336
.
42.
Zhao
,
L.
, and
Wang
,
T.
,
2012
, “
An Investigation of Treating Adiabatic Wall Temperature as the Driving Temperature in Film Cooling Studies
,”
ASME J. Turbomach.
,
134
(
6
), p.
061032
.
43.
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
,
2002
, “
Evaluation of Pressure Side Film Cooling With Flow and Thermal Field Measurements—Part I: Showerhead Effects
,”
ASME J. Turbomach.
,
124
(
4
), pp.
670
677
.
44.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Heat Transfer
,”
ASME J. Turbomach.
,
118
(
4
), pp.
800
806
.
45.
Mehendale
,
A. B.
, and
Han
,
J.-C.
,
1993
, “
Reynolds-Number Effect on Leading-Edge Film Effectiveness and Heat-Transfer Coefficient
,”
Int. J. Heat Mass Transfer
,
36
(
15
), pp.
3723
3730
.
46.
Zhang
,
B.
,
Zhu
,
H.
,
Liu
,
C.
, and
Wei
,
J.
,
2019
, “
Numerical and Experimental Study on the Heat Flux of Double-Wave Trench
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
4
), p.
041002
.
You do not currently have access to this content.