Abstract

In this work, a thermodynamic model based on an endoreversible engine approach is developed to analyze the performance of heat engines operating under different thermodynamic cycles. The model considers finite heat transfer rate, variable heat source and sink temperatures, and irreversibilities associated with the expansion and compression. Expressions for the maximum power and efficiency at maximum power output are obtained as a function of hot and cold reservoir temperatures, the equivalent isentropic efficiency of compression and expansion components, and the effective conductance ratio between heat exchangers. In all cases, the Curzon–Ahlborn efficiency is retrieved at constant reservoir temperatures and neglected compression–expansion irreversibilities. The proposed model allows assessing the effect of isentropic efficiencies and heat exchanger design and operation characteristics for different thermodynamic cycles.

References

1.
Curzon
,
F. L.
, and
Ahlborn
,
B.
,
1975
, “
Efficiency of a Carnot Engine at Maximum Power Output
,”
Am. J. Phys.
,
43
(
1
), pp.
22
24
.
2.
Chambadal
,
P.
,
1957
,
Les Centrales Nucléaires
,
Armand Colin
,
Paris
.
3.
Novikov
,
I. I.
,
1958
, “
The Efficiency of Atomic Power Stations (a Review)
,”
J. Nucl. Energy (1954)
,
7
(
1–2
), pp.
125
128
.
4.
Esposito
,
M.
,
Kawai
,
R.
,
Lindenberg
,
K.
, and
Van den Broeck
,
C.
,
2010
, “
Efficiency at Maximum Power of Low-Dissipation Carnot Engines
,”
Phys. Rev. Lett.
,
105
(
15
), p.
150603
.
5.
Huleihil
,
M.
,
2018
, “
Effective Temperature and Performance Characteristics of Heat Engines
,”
Int. J. Thermodyn.
,
21
(
3
), pp.
128
134
.
6.
Calvo-Hernández
,
A.
,
Roco
,
J. M. M.
,
Medina
,
A.
,
Velasco
,
S.
, and
Guzmán-Vargas
,
L.
,
2005
, “
The Maximum Power Efficiency 1 − √τ: Research, Education, and Bibliometric Relevance
,”
Eur. Phys. J.
,
224
(
5
), pp.
809
823
.
7.
Bejan
,
A.
,
1998
,
Advanced Engineering Thermodynamics
,
Wiley
,
New York
.
8.
Levario-Medina
,
S.
,
Valencia-Ortega
,
G.
, and
Arias-Hernandez
,
L. A.
,
2019
, “
Thermal Optimization of Curzon–Ahlborn Heat Engines Operating Under Some Generalized Efficient Power Regimes
,”
Eur. Phys. J. Plus
,
134
(
7
), p.
348
.
9.
Iyyappan
,
I.
, and
Johal
,
R. S.
,
2019
, “
Efficiency of a Two-Stage Heat Engine at Optimal Power
,”
EPL
,
128
(
5
), p.
50004
.
10.
Chen
,
J.
,
Yan
,
Z.
,
Lin
,
G.
, and
Andresen
,
B.
,
2001
, “
On the Curzon–Ahlborn Efficiency and Its Connection With the Efficiencies of Real Heat Engines
,”
Energy Convers. Manage.
,
42
(
2
), pp.
173
181
.
11.
Gutkowicz-Krusin
,
D.
,
Procaccia
,
I.
, and
Ross
,
J.
,
1978
, “
On the Efficiency of Rate Processes. Power and Efficiency of Heat Engines
,”
J. Chem. Phys.
,
69
(
9
), p.
3898
.
12.
Wu
,
C.
, and
Kiang
,
R. L.
,
1992
, “
Finite-Time Thermodynamic Analysis of a Carnot Engine With Internal Irreversibility
,”
Energy
,
17
(
12
), pp.
1173
1178
.
13.
Gordon
,
J. M.
, and
Huleihil
,
M.
,
1992
, “
General Performance Characteristics of Real Heat Engines
,”
J. Appl. Phys.
,
72
(
3
), pp.
829
837
.
14.
Chen
,
J.
,
1998
, “
A Universal Model of an Irreversible Combined Carnot Cycle System and Its General Performance Characteristics
,”
J. Phys. A: Math. Gen.
,
31
(
15
), pp.
3383
3394
.
15.
Ikegami
,
Y.
, and
Bejan
,
A.
,
1998
, “
On the Thermodynamic Optimization of Power Plants With Heat Transfer and Fluid Flow Irreversibilities
,”
ASME J. Sol. Energy Eng.
,
120
(
2
), pp.
139
144
.
16.
Bejan
,
A.
,
1996
, “
Maximum Power From Fluid Flow
,”
Int. J. Heat Mass Transfer
,
39
(
6
), pp.
1175
1181
.
17.
Grazzini
,
G.
,
1991
, “
Work From Irreversible Heat Engines
,”
Energy
,
16
(
4
), pp.
747
755
.
18.
Ibrahim
,
O. M.
,
Klein
,
S. A.
, and
Mitchell
,
J. W.
,
1991
, “
Optimum Heat Power Cycles for Specified Boundary Conditions
,”
ASME J. Eng. Gas Turbines Power
,
113
(
4
), pp.
514
521
.
19.
Lee
,
W. Y.
, and
Kim
,
S. S.
,
1991
, “
An Analytical Formula for the Estimation a Rankine Cycle Heat Engine Efficiency at Maximum Power
,”
Int. J. Energy Res.
,
15
(
3
), pp.
149
159
.
20.
Lee
,
W. Y.
, and
Kim
,
S. S.
,
1991
, “
Power Optimization of an Irreversible Heat Engine
,”
Energy
,
16
(
7
), pp.
1051
1058
.
21.
Singh
,
V.
, and
Johal
,
R. S.
,
2018
, “
Low-Dissipation Carnot-Like Heat Engines at Maximum Efficient Power
,”
Phys. Rev. E
,
98
(
6
), p.
062132
.
22.
Sahin
,
B.
,
Kodal
,
A.
, and
Yavuz
,
H.
,
1995
, “
Efficiency of a Joule-Brayton Engine at Maximum Power Density
,”
J. Phys. D: Appl. Phys.
,
28
(
7
), pp.
1309
1313
.
23.
Angulo-Brown
,
F.
,
1991
, “
An Ecological Optimization Criterion for Finite-Time Heat Engines
,”
J. Appl. Phys.
,
69
(
11
), pp.
7465
7469
.
24.
Durmayaz
,
A.
,
Sogut
,
O. S.
,
Sahin
,
B.
, and
Yavuz
,
H.
,
2004
, “
Optimization of Thermal Systems Based on Finite-Time Thermodynamics and Thermoeconomics
,”
Prog. Energy Combust. Sci.
,
30
(
2
), pp.
175
217
.
25.
Ding
,
A.
,
Chen
,
L.
, and
Sun
,
F.
,
2011
, “
A Unified Description of Finite Time Exergoeconomic Performance for Seven Typical Irreversible Heat Engine Cycles
,”
Int. J. Sustain. Energy
,
30
(
5
), pp.
257
269
.
26.
Bejan
,
A.
,
1991
,
Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes
,
CRC Press
,
Boca Raton, FL
.
27.
Mironova
,
V. A.
,
Tsirlin
,
A. M.
,
Kazakov
,
V. A.
, and
Berry
,
R. S.
,
1994
, “
Finite-Time Thermodynamics: Exergy and Optimization of Time-Constrained Processes
,”
J. Appl. Phys.
,
76
(
2
), pp.
629
636
.
28.
Tyagi
,
S. K.
,
Kaushik
,
S. C.
, and
Salhotra
,
R.
,
2002
, “
Ecological Optimization and Performance Study of Irreversible Stirling and Ericsson Heat-Engines
,”
J. Phys. D: Appl. Phys.
,
35
(
20
), pp.
2668
2675
.
29.
Chen
,
L.
,
Zhou
,
J.
,
Sun
,
F.
, and
Wu
,
C.
,
2004
, “
Ecological Optimization for Generalized Irreversible Carnot-Engines
,”
Appl. Energy
,
77
(
3
), pp.
327
338
.
30.
Arias-Hernández
,
L. A.
,
Ares de Parga
,
G.
, and
Angulo-Brown
,
F.
,
2004
, “
A Variational Ecological-Type Optimization of Some Thermal-Engine Models
,”
Open Syst. Inf. Dyn.
,
11
(
2
), pp.
123
138
.
31.
Ust
,
Y.
,
Safa
,
A.
, and
Sahin
,
B.
,
2005
, “
Ecological Performance Analysis of an Endoreversible Regenerative Brayton Heat Engine
,”
Appl. Energy
,
80
(
3
), pp.
247
260
.
32.
Chen
,
L.
,
Zhang
,
W.
, and
Sun
,
F.
,
2007
, “
Power, Efficiency, Entropy Generation Rate and Ecological Optimization for a Class of Generalized Irreversible Universal Heat Engine Cycles
,”
Appl. Energy
,
84
(
5
), pp.
512
525
.
33.
Calvo Hernández
,
A.
,
Roco
,
J. M. M.
,
Medina
,
A.
, and
Sánchez-Salas
,
N.
,
2014
, “
Heat Engines and the Curzon–Ahlborn Efficiency
,”
Rev. Mex. Fís.
,
60
(
5
), pp.
384
389
.
34.
Van den Broeck
,
C.
,
2005
, “
Thermodynamic Efficiency at Maximum Power
,”
Phys. Rev. Lett.
,
95
(
19
), p.
190602
.
35.
Esposito
,
M.
,
Lindenberg
,
K.
, and
Van den Broeck
,
C.
,
2009
, “
Thermoelectric Efficiency at Maximum Power in a Quantum dot
,”
EPL
,
85
(
6
), p.
60010
.
You do not currently have access to this content.