Abstract

Liquid metal owns the highest thermal conductivity among all the currently available fluid materials. This property enables it to be a powerful coolant for the thermal management of large power device or high flux chip. In this paper, a high-efficiency heat dissipation system based on the electromagnetic-driven rotational flow of liquid metal was demonstrated. The velocity distribution of the liquid metal was theoretically analyzed and numerically simulated. The results showed that the velocity was distributed unevenly along longitudinal section and the maximum velocity appears near the anode. On the temperature distribution profile of the heat dissipation system, the temperature on the electric heater side was much higher than the other regions and the role of the rotated liquid metal was to homogenize the temperature of the system. To analyze the heat dissipation of the system performance, a second-order R-C network thermal resistance model of the experimental device was established with the parameters determined. The total thermal resistance of the dissipation system presented an increasing tendency with the increase of the heating power and gradually stabilized to about 4.42 °C/W. Besides, the relationship between the temperature of the electric heater and the heating power was experimentally determined. And it exhibits linear characteristic with the slope value of about 1.033 oC/W. With such corresponding relations, the heating power could be conveniently determined once the maximum control temperature was given. The heat dissipation method introduced in the paper provides a novel way for fabricating compact chip cooling system.

References

1.
Deng
,
Y. G.
, and
Liu
,
J.
,
2010
, “
Design of Practical Liquid Metal Cooling Device for Heat Dissipation of High Performance CPUs
,”
ASME J. Electron. Packag.
,
132
(
3
), p.
031009
.
2.
Zhu
,
J. Y.
,
Tang
,
S. Y.
,
Khoshmanesh
,
K.
, and
Ghorbani
,
K.
,
2016
, “
An Integrated Liquid Cooling System Based on Galinstan Liquid Metal Droplets
,”
ACS Appl. Mater. Interfaces
,
8
(
3
), pp.
2173
2180
.
3.
Feng
,
W.
,
2003
, “
Making a Case for Efficient Supercomputing
,”
ACM Queue
,
1
(
7
), pp.
54
64
.
4.
Yeom
,
T.
,
Huang
,
L. Z.
,
Zhang
,
M.
,
Simon
,
T.
, and
Cui
,
T. H.
,
2019
, “
Heat Transfer Enhancement of Air-Cooled Heat Sink Channel Using a Piezoelectric Synthetic Jet Array
,”
Int. J. Heat Mass Transfer
,
143
, p.
118484
.
5.
Luo
,
M. L.
,
Zhou
,
Y. X.
, and
Liu
,
J.
,
2014
, “
Blade Heat Dissipator With Room-Temperature Liquid Metal Running Inside a Sheet of Hollow Chamber
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
4
(
3
), pp.
459
464
.
6.
He
,
Z. G.
,
Xi
,
H. N.
,
Ding
,
T.
,
Wang
,
J. M.
, and
Li
,
Z.
,
2021
, “
Energy Efficiency Optimization of an Integrated Heat Pipe Cooling System in Data Center Based on Genetic Algorithm
,”
Appl. Therm. Eng.
,
182
, p.
115800
.
7.
Bescond
,
M.
, and
Hirakawa
,
K.
,
2020
, “
High-Performance Thermionic Cooling Devices Based on Tilted-Barrier Semiconductor Heterostructures
,”
Phys. Rev. Appl.
,
14
(
6
), p.
064022
.
8.
Hernández
,
R. H.
,
2015
, “
Natural Convection in Thermal Plumes Emerging From a Single Heat Source
,”
Int. J. Therm. Sci.
,
98
, pp.
81
89
.
9.
Baïri
,
A.
,
Zarco-Pernia
,
E.
, and
de María
,
J. M. G.
,
2014
, “
A Review on Natural Convection in Enclosures for Engineering Applications. The Particular Case of the Parallelogrammic Diode Cavity
,”
Appl. Therm. Eng.
,
63
(
1
), pp.
304
322
.
10.
Vasiliev
,
L. L.
,
2005
, “
Heat Pipes in Modern Heat Exchangers
,”
Appl. Therm. Eng.
,
25
(
1
), pp.
1
19
.
11.
Saha
,
M.
,
Feroz
,
C. M.
,
Ahmed
,
F.
, and
Mujib
,
T.
,
2012
, “
Thermal Performance of an Open Loop Closed End Pulsating Heat Pipe
,”
Heat Mass Transfer
,
48
(
2
), pp.
259
265
.
12.
Anandan
,
S. S.
, and
Ramalingam
,
V.
,
2008
, “
Thermal Management of Electronics: A Review of Literature
,”
Therm. Sci.
,
12
(
2
), pp.
5
26
.
13.
Misale
,
M.
,
Garibaldi
,
P.
,
Passos
,
J. C.
, and
de Bitencourt
,
G. G.
,
2007
, “
Experiments in a Single-Phase Natural Circulation Mini-Loop
,”
Exp. Therm. Fluid Sci.
,
31
(
8
), pp.
1111
1120
.
14.
Tilley
,
B. S.
,
2013
, “
On Microchannel Shapes in Liquid-Cooled Electronics Applications
,”
Int. J. Heat Mass Transfer
,
62
, pp.
163
173
.
15.
Karimi
,
D.
,
Behi
,
H.
,
Hosen
,
M. S.
,
Jaguemont
,
J.
,
Berecibar
,
M.
, and
Van Mierlo
,
J.
,
2021
, “
A Compact and Optimized Liquid-Cooled Thermal Management System for High Power Lithium-Ion Capacitors
,”
Appl. Therm. Eng.
,
185
, p.
116449
.
16.
Gonzalez-Valle
,
C. U.
,
Samir
,
S.
, and
Ramos-Alvarado
,
B.
,
2020
, “
Experimental Investigation of the Cooling Performance of 3-D Printed Hybrid Water-Cooled Heat Sinks
,”
Appl. Therm Eng.
,
168
, p.
114823
.
17.
Mukesh Kumar
,
P. C.
, and
Arun Kumar
,
C. M.
,
2019
, “
Numerical Evaluation of Cooling Performances of Semiconductor Using CuO/Water Nanofluids
,”
Heliyon
,
5
(
8
), p.
e02227
.
18.
Li
,
P. P.
,
Liu
,
J.
, and
Zhou
,
Y. X.
,
2014
, “
Design of a Self-Driven Liquid Metal Cooling Device for Heat Dissipation of Hot Chips in a Closed Cabinet
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
1
), p.
011009
.
19.
Dobosz
,
A.
,
Plevachuk
,
Y.
,
Sklyarchuk
,
V.
,
Sokoliuk
,
B.
,
Tkach
,
O.
, and
Gancarz
,
T.
,
2019
, “
Liquid Metals in Cooling Systems: Experimental Design of Thermophysical Properties of Eutectic Ga-Sn-Zn Alloy With Pb Additions
,”
J. Mol. Liq.
,
281
, pp.
542
548
.
20.
Wang
,
L.
, and
Liu
,
J.
,
2019
, “
Gallium: From the Backbone of Electronic Industry to Full Blooming
,”
Chin. J. Chem. Educ.
,
40
(
20
), pp.
1
12
.
21.
Ma
,
K. Q.
, and
Liu
,
J.
,
2007
, “
Heat-Driven Liquid Metal Cooling Device for the Thermal Management of a Computer Chip
,”
J. Phys. D: Appl. Phys.
,
40
(
15
), pp.
4722
4729
.
22.
Li
,
T.
,
Lv
,
Y. G.
,
Liu
,
J.
, and
Zhou
,
Y. X.
,
2006
, “
A Powerful Way of Cooling Computer Chip Using Liquid Metal With Low Melting Point as the Cooling Fluid
,”
Forsch. Ingenieurwes
,
70
(
4
), pp.
243
251
.
23.
Zhang
,
X. D.
,
Li
,
X. P.
,
Zhou
,
Y. X.
,
Yang
,
J.
, and
Liu
,
J.
,
2019
, “
Vascularized Liquid Metal Cooling for Thermal Management of kW High Power Laser Diode Array
,”
Appl. Therm. Eng.
,
162
, p.
114212
.
24.
Kirillov
,
P. L.
,
2018
, “
Liquid Metals in Nuclear Power: An Engineer Looks Into the Past and Future
,”
At. Energy
,
124
(
3
), pp.
159
165
.
25.
Rachkov
,
V. I.
,
Sorokin
,
A. P.
, and
Zhukov
,
A. V.
,
2018
, “
Thermal Hydraulic Studies of Liquid-Metal Coolants in Nuclear-Power Facilities
,”
High Temp.
,
56
(
1
), pp.
124
137
.
26.
Pacio
,
J.
,
Singer
,
C.
,
Wetzel
,
T.
, and
Uhlig
,
R.
,
2013
, “
Thermodynamic Evaluation of Liquid Metals as Heat Transfer Fluids in Concentrated Solar Power Plants
,”
Appl. Therm. Eng.
,
60
(
1–2
), pp.
295
302
.
27.
Lorenzin
,
N.
, and
Abánades
,
A.
,
2016
, “
A Review on the Application of Liquid Metals as Heat Transfer Fluid in Concentrated Solar Power Technologies
,”
Int. J. Hydrogen Energy
,
41
(
17
), pp.
6990
6995
.
28.
Ma
,
K. Q.
, and
Liu
,
J.
,
2007
, “
Nano Liquid-Metal Fluid as Ultimate Coolant
,”
Phys. Lett. A
,
361
(
3
), pp.
252
256
.
29.
Deng
,
Y. G.
, and
Liu
,
J.
,
2010
, “
Hybrid Liquid Metal–Water Cooling System for Heat Dissipation of High Power Density Microdevices
,”
Heat Mass Transfer
,
46
(
11–12
), pp.
1327
1334
.
30.
Yang
,
X. H.
, and
Liu
,
J.
,
2018
, “
Advanced Liquid Metal Cooling: Historical Developments and Research Frontiers
,”
Sci. Technol. Rev.
,
36
(
15
), pp.
54
66
.
31.
Yang
,
X. H.
,
Tan
,
S. C.
,
Ding
,
Y. J.
, and
Liu
,
J.
,
2017
, “
Flow and Thermal Modeling and Optimization of Micro/Mini-Channel Heat Sink
,”
Appl. Therm. Eng.
,
117
, pp.
289
296
.
32.
Wang
,
L.
, and
Liu
,
J.
,
2015
, “
Electromagnetic Rotation of a Liquid Metal Sphere or Pool Within a Solution
,”
Proc. R. Soc. A
,
471
(
2178
), p.
20150177
.
33.
Kang
,
K. H.
,
Kang
,
I. S.
, and
Lee
,
C. M.
,
2002
, “
Effects of a Uniform Magnetic Field on a Growing or Collapsing Bubble in a Weakly Viscous Conducting Fluid
,”
Phys. Fluids
,
14
(
1
), pp.
29
40
.
34.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
2013
,
Fluid Mechanics: Landau and Lifshitz: Course of Theoretical Physic
,
Butterworth Heinemann Press
,
Oxford
.
35.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2002
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
,
New York
.
36.
Tan
,
S. C.
,
Zhou
,
Y. X.
,
Wang
,
L.
, and
Liu
,
J.
,
2016
, “
Electrically Driven Chip Cooling Device Using Hybrid Coolants of Liquid Metal and Aqueous Solution
,”
Sci. China: Technol. Sci.
,
59
(
2
), pp.
301
308
.
You do not currently have access to this content.